

May 4-6, 2010 Minneapolis Convention Center Minneapolis, MN

Jack Oswald CEO

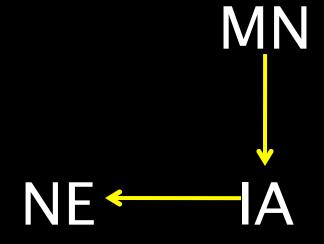
SynGest Inc.

20 Questions

"What's a guy from San Francisco doing out here?

Visit

Meeting (In-person preferred)


Phone call

Anhydrous

Anhydrous Ammonia

Vegetable

"Vegetables, it's what food eats..."

Example of the Coriolis Effect

Cornucopia BioRefinery[™]

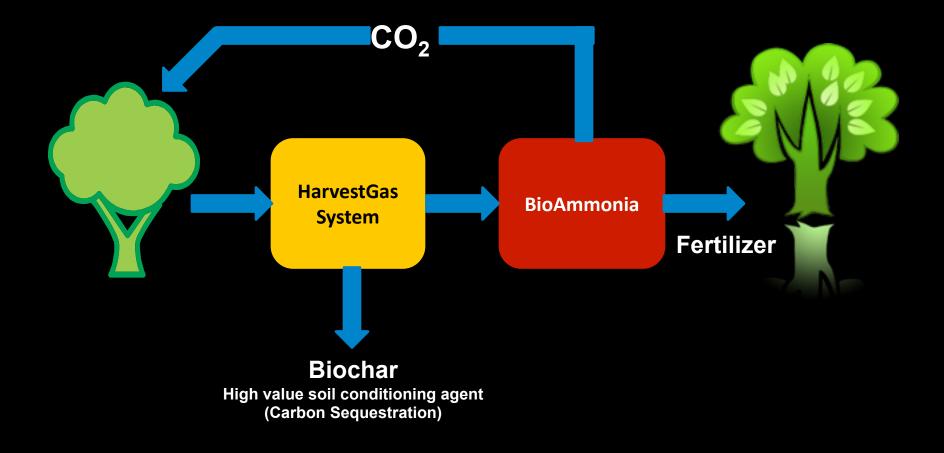
The Three F's: Food, Fertilizer and Fuel™

Jim Eiler, Eiler Capital Advisors Dave Coppess and team, Heartland Coop Doug Holliday, IA Corn Growers Assoc. Pete Moss and team, Frazier Barnes and Assoc. Dr. Robert Brown, Iowa State U.

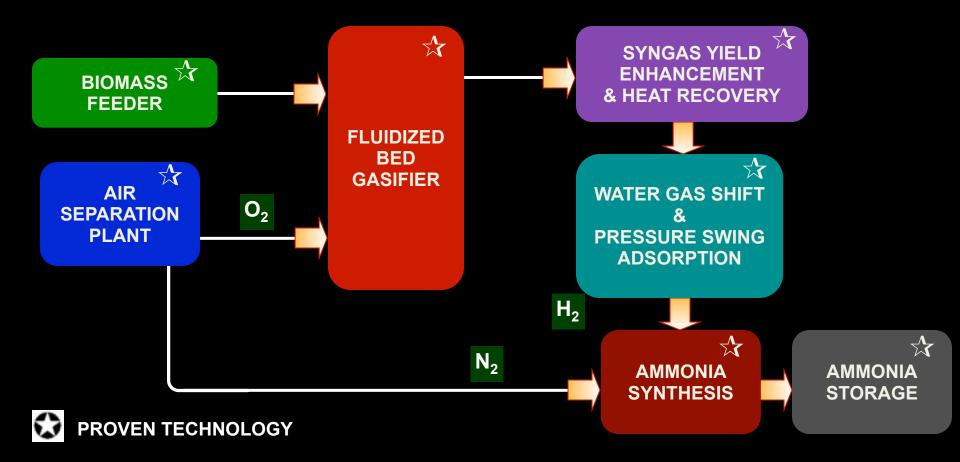
Dr. Ravi Randhava, CTO, SynGest Inc.

The untiens eaction of **Eovergy of Nature** ant Agoid ulture

BioAmmonia TM from Biomass America's Strategic Fuel and Fertilizer

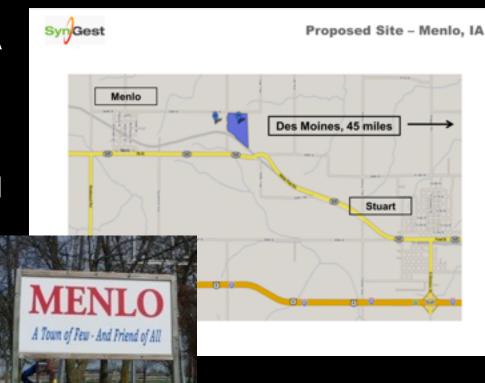

Commercialization Of a **Private** R&D Lab

Anhydrous Ammonia



Biochar makes SynGest Carbon Negative

SynGest BioAmmonia[™] Process


Syngas/BioSyngas Applications

SvnGest Menlo LLC/ Proposed First Site

- 3550 Talon Avenue, Menlo, IA 50164
- **Option on 75 acres**
- Adjacent to operating ethanol plant
- Near Interstate 80 (7 miles)
- Rail access to the site
- **45 miles from Des Moines**

Biomass requirements: 130,000 TPY

Biomass Drove the Design

Low cost Availability Re-modeling: Started with a paint job Ended re-building the whole house

Biomass Considerations

Maximum sustainably harvested crop residue Cheap Stover: ? Corn cobs: 100% harvestable annually

Corn Cobs

"How are you going to collect all those cobs?"

Corn Cob Harvest Research

Focus groups Equipment manufactu **Academic researchers** Logistics Interested businesses **Biomass Conference: IA State BECON** Center

Key Criteria

Farmers Inexpensive Slipstream

Bankers 100% annually reliable Credit worthy supplier

Farmer Concerns

"If it slows me down I am not interested"

"During a challenging harvest, I'll unhook it, or turn it off, and you won't get your cobs"

Rational Response: Must protect core business

Conclusion 1: Farmer Driven

Must slipstream with existing harvest approach

Must protect the core business

Finance Concerns

Biomass supply chain must be 100% reliable

Requires "credit worthy" harvesting and supplier(s)

Supply contract terms match the term of the loan

Conclusion 2: Finance Driven

Includes Conclusion 1: Farmer Driven

Supplier must have a track record

Supplier must provide a guarantee of delivery

Limited Options

Cornucopia BioRefinery[™]

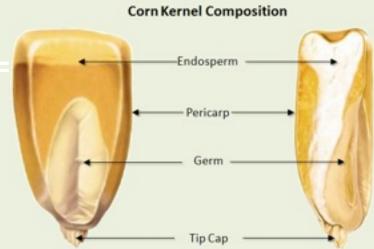
Not your typical "breakthrough"

Cornucopia Technology

Slipstream biomass harvesting Dry milling – a.k.a. Fractionation Fermentation Gasification Food-grade oil extraction

Slipstream Harvesting

Corn / Corn cob mix Reliable Addresses Farmer and Finance Concern Leverages existing coop infrastructure Inexpensive: \$15/T JIT delivered cost


Fractionation

Endosperm (starch) =

fermentation

Germ = food-grade vegetable oil / protein

Bran and cobs (cellulose) gasification

The pericarp and tip cap make up the bran. Endosperm, or fermentable starch, is about 80 percent of the kernel. Germ and bran, non-fermentables, are about 12.5 and 6.5 percent (as is basis).

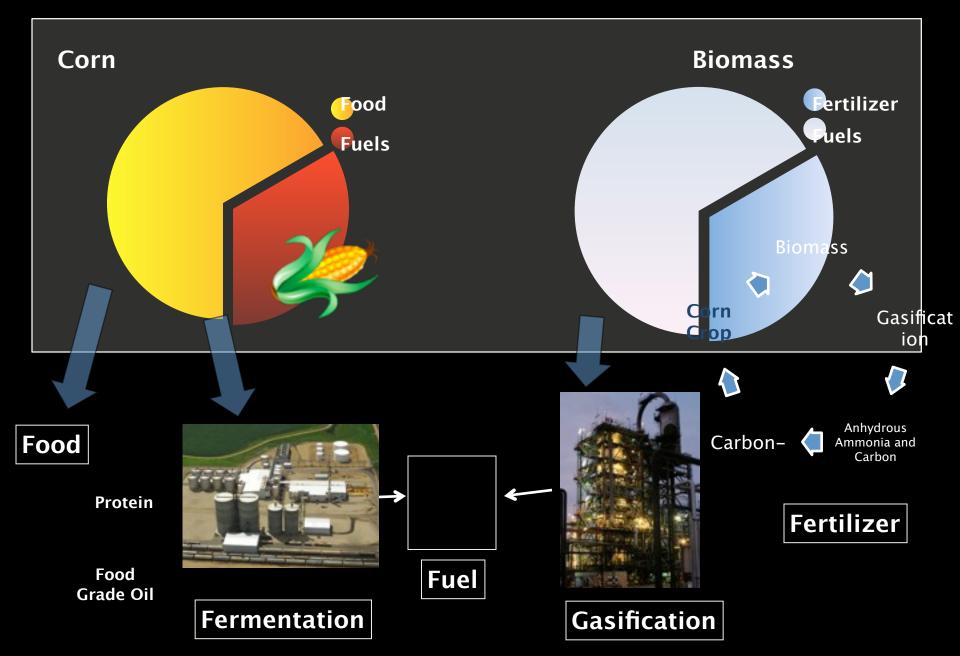
Fermentation

Endosperm (starch) fermented into fuels Today = Ethanol

- Soon = BioButanol, Diesel, etc. a.k.a. "Drop-in"
- 20% increase in production for existing plants
- Lower cost per gallon
- Higher net energy
- Lower carbon content

SynGest Gasification

Bran / cobs Carbon-negative NH₃ Methanol, DME > 50% less fossil energy/ carbon


Food-Grade Oil / Protein

- Low cost GRAS solvents Food-grade vegetable oil Food-grade protein (dry / de-oiled)
- Combined value greater than DDGS

Maximum food value

Cornucopia BioRefinery Complex Maximizing Food, Fertilizer and Fuel Production from Every Ear of Corn

Where Energy and Agriculture Meet The Three F's: Food, Fertilizer and Fuel **DRY FRACTIONATION** GERM **ENDOSPERM** BRAN AIR ENZYMATIC GRINDING SACCHARIFICATION **AIR SEPARATION** HARVEST GAS GASIFIER UNIT **OPROTEX EXTRACTION** FERMENTATION WATER GAS SHIFT TECHNOLOGY & PSA N_2 FOOD GRADE **HIGH PROTEIN** DRY STILLAGE CO_2/H_2 PURE H₂ **CORN OIL** (Riboflavin Rich) FEED EXTRACTIVE SEPARATION NH₃ SYNTHESIS **Optin** ANHYDROUS AMMONIA FERTILIZER

SynGest "Project Cornucopia"

RFS2 Compatibility

Mandate: fuels from non-food biomass

Assumes food v.s. fuel conundrum

A Different Approach

Maximizes benefits of cellulose Simultaneously produce The Three F's: Food, Fertilizer and Fuel Indirect way of achieving >50% reduction in GHG Carbon-negative nitrogen fertilizer <u>Cornucopia BioRefinery exceeds goals of</u> RFS2

Industry Opportunity

Increase existing 12B GPY to 14.4B GPY Drop-in fuels opens doubling of capacity

- BioButanol blends with gasoline and diesel
- Compatible with existing pipes, tanks, cars/trucks
- 12 new Cornucopia BioRefineries annually
- **Retrofit existing plants**

Advanced Biofuels Industry Chant

Cornucopia BioRefinery[™]

Coming soon to America

