The BioEnergy Science Center: ENERGY An Integrated Strategy to Understand and Overcome Biomass Recalcitrance

Martin Keller, Ph.D. Director, BioEnergy Science Center http://www.bioenergycenter.org/

June 30, 2009

The BioEnergy Science Center **ENERGY**

BESC: A multi-institutional DOE-funded center dedicated to <u>understanding and modifying</u> <u>plant biomass recalcitrance</u>

http://www.bioenergycenter.org/

- Oak Ridge National Laboratory
- University of Georgia
- University of Tennessee
- National Renewable Energy Laboratory
- Georgia Institute of Technology
- Samuel Roberts Noble Foundation
- Dartmouth College
- ArborGen, LLC
- Verenium Corporation
- Mascoma Corporation
- •University of California-Riverside
- Cornell University
- Washington State University
- University of Minnesota
- North Carolina State University
- Brookhaven National Laboratory
- Virginia Polytechnic Institute

Access to the Sugars in Lignocellulosic **ENERGY** Biomass is the Current Critical Barrier

- Solving this will cut processing costs significantly and be used in most conversion processes
- This requires an integrated multidisciplinary approach
- Timeframe
 - Modified plants to field trials: Year 5
 - New or improved microbes to development: Years 4–5
 - Analysis and screening technologies: Year 3 on

Comparative Impacts of R&D on Biomass Processing Cost

Without overcoming biomass recalcitrance (A), cellulosic biofuels will be more expensive than corn biofuels. Improved sugar conversion (B) is not enough.

Ref: Lynd, L.R., M.S. Laser, D. Bransby, B.E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J.D. McMillan, J. Sheehan, C.E. Wyman, "How Biotech can transform biofuels," *Nature Biotechnology* 26:169-172 (2008)

BESC Will Revolutionize How Biomass is Processed

A Two-pronged Approach to **WENE** Increase the Accessibility of Biomass Sugars

Both utilize rapid screening for relevant traits followed by detailed analysis of selected samples

A Two-pronged Approach to **WENE** Increase the Accessibility of Biomass Sugars

Both utilize rapid screening for relevant traits followed by detailed analysis of selected samples

Strategy Part 1: Identify, Understand and Manipulate the Plant Cell Wall Genes Responsible for Recalcitrance

9

Primary Wall 90% polysaccharide

Dividing and growing cells

Pectin Hemicellulose Cellulose (proteins)

Secondary Walls

70 – 80% polysaccharide

Some cells with structural roles

↓ Pectin
Hemicellulose
Cellulose
Lignin
(proteins)

BESC BioEnergy Science Center

How Do We Identify Recalcitrance Genes?

<u>10</u>

• Targeted cell wall synthesis approach:

- * Test known putative recalcitrance genes in via *Populus* and switchgrass transgenics (TP)
- * Basic research to identify unknown genes and decipher how they effect recalcitrance

Discovery-based natural variation approach:

- * Identify natural variation in recalcitrance
- * Identify gene responsible
- * Test via *Populus* and switchgrass transgenics (TP)
- * Activation tagging

What Genes Control Cell Wall Synthesis (and Access to the Sugars)?

Targeted Plant Genes and Transformation Pipeline

- Gene transformation pipeline established and running
 - 70 Populus genes per set
 - 4 Switchgrass for stable transformation per set
 - 30 Switchgrass by VIGS (viral induced gene silencing) per set
 - Three sets totaling >300 genes in pipeline after three rounds of review
- Populus
 - Transformation: 200 genes per year
 - Activation Tagging: 1000 genes per year
- Switchgrass
 - Transformation: 20 genes Year 1; 40-60 Year 2
 - VIGS: 200 genes per year, RNAi
- Higher perennial plants have fewer genetic tools and so targets must be selected carefully

Functions of initial targets (set #1)

I.S. DEPARTMENT OF

Functional category	# genes
Cell wall biosynthesis	- 50
Cell division and expansion	46
Signal transduction	26
Stress response	20
Metabolism	19
Intracellular traffic	9
Protein fate	9
Transcription	9
Plant defence	4
Nucleic acid or nucleotide binding	2
Transporters	2
Total	196

Targeted Cell Wall Synthesis Approach: A Few Examples

<u>14</u>

Tension Stress Study: Background

Tension wood is formed on upper side of bent stems and characterized by:

- Increased number of xylem cells
- Increased cell wall thickness
- Special layer of wall: Gelatinous G-layer
- Increased cellulose content
- Decreased lignin content
- Parallel orientation of microfibrils

Tension Stress Study: Experiment

- Two genotypes of *Populus* plants used in the bending experiment
- Two weeks of mechanical bending
- Harvested, pooled and processed (where needed) developing xylem and phloem tissues from tension, opposite and normal wood types

Control erect plants

Mechanically bent plants

Tension Stress Study: Characterization ENERGY

-Omics

- Metabolomics
- Proteomics
- 454 Transcriptomics
- RTPCR

LIMS

- Sample workflow
- Barcodes

Spectroscopy

- MBMS
- NMR
- FTIR
- LIBS

Imaging

- WoodCAT
- AFM
- Optical microscope

Modifying Cell Wall Composition **WENE** and Structure Can Reduce Recalcitrance

- More sugar is solubilized by cellulase when the lignin content of alfalfa cell walls is reduced
- Strategy is feasible for Populus and switchgrass

Biochemical and Genetic Dissection of Lignin (Biosynthesis in Switchgrass

<u>19</u>

U.S. DEPARTMENT OF ENERGY

Discovery-based Approach to Identify Recalcitrance-Associated Genes via Analysis of Natural Variation

Mining Genetic Variation in Switchgrass ENERGY

Create diverse population by cross "lowland" SG AP-13 and "upland" SG VS-16 into 385 pseudo F1 clones

Pseudo F₁ population of 385 genotypes

Clones ready for field planting

HTS Pipeline

Sugar Release Assay

> Analytical Pyrolysis

Create Genetic Marker Map to identify allelic variation

> Identify Marker Trait Association

Cell Wall Biosynthesis Database

Mining Variation to Identify Key Genes Servers in Biomass Composition and Sugar Release

Sugar Release Assay Analytical Pyrolysis

E.Coult

Create Genetic Marker Map to identify allelic variation

> Identify Marker Trait Association

U.S. DEPARTMENT OF

Cell Wall Biosynthesis Database

Establish common gardens for association and activation tag populations with 1000s of plants

Populus Association Study

Plant Materials

- Cuttings propagated by Mt. Jefferson Farms (Salem, OR)
- Propagation successful for 100% of the genotypes
- Plants moved to Oregon State University for overwintering

Association Genetics Study –

Whole-genome Resequencing in effort to discover

SNPs across *Populus* genome

In collaboration with the Joint Genome Institute 10 alternate *Populus* genomes are being

resequencing

Preliminary Results

- 28x depth from 6 Solexa runs
- 85% align to Nisqually-1
- 843,000 SNP loci relative to reference
- 78,000 SNP loci are heterozygous

-			Solexa High	Solexa Low	Nisqualy-1	
	position		Probability	Probability	dataset	
	LG_VIII	13319819		C-T	G-A	
	LG_VIII	13324194			C-A	
	LG_VIII	13317944	T-G		Т	
	LG_VIII	13319983	T-G		A-C	
	LG_VIII	13319333		G-A	C-T	
	LG_VIII	13317669			T-C	
m	LG_VIII	13324778			T-G	
	LG_VIII	13322865	T-C		Т	
8	LG_VIII	13326371			T-A	
	LG_VIII	13317413			A-T	
X	LG_VIII	13319813		T-C	A-G	
	LG_VIII	13319390		T-C	A-G	
1000	LG_VIII	13317533	G-T		G	
A TIME	LG_VIII	13325176	G-A		G-A	
	LG_VIII	13317513	G-C		G	
and and a second	LG_VIII	13320731			C-A	
-	LG_VIII	13324631		G-T	G-T	
	LG_VIII	13318353		G-A	G	
	LG_VIII	13324512			T-A	
	LG_VIII	13317685			A-G	
0.00	LG_VIII	13321596	T-A		T-A	
N OF	LG_VIII	13319372		T-C	A-G	
	LG_VIII	13322061			A-G	
	Refeilig, 11 1351	scannag ceannart pac 9	tgaace are	cagttostagetettgageet santtostaseteti <mark>se eta</mark>		

E I B 🔀

Strategy Part 2: Biomass Recalcitrance ENERGY Measure, Understand, and Model

HTP Characterization Pipeline for the Recalcitrance Phenotype

Screening of 1000's of samples

Composition analytical pyrolysis, IR, confirmed by wet chemistry Pre-treatment new method with dilute acid and steam Enzyme digestibility sugar release with enzyme cocktail

Detailed chemical and structural analyses of specific samples

Composition Data from Analytic Pyrolysis (MBMS) for High-throughput Screening of Transgenic Populations

Composition data from *Populus* association study (798 samples) represents full range of known *Populus* variation

- Rapid (50/h w/ 4mg)
- Reliable
- Gives values for glucan, xylan, lignin, and details on monomers – e.g., S/G
- Complements time-consuming and more variable wet chemistry, molecular and biochemical analyses

Composition Data from *Populus* Association Study

 The association samples display extreme variation in lignin, S/G ratio, and sugar content

 There is a negative correlation between sugar content and lignin content

All sampled genotypes are being replicated and will be established in a common garden experiment

Enabling Technology: An HTP Pretreatment for 1000s of Small Samples

Unique and Important

- Steam: efficient uniform heating
- *No separation*: saves time and increases accuracy
- 2-4mg sample size: reduces material costs

HTP Enzymatic Digestion Assays

ENERGY

- Recalcitrance is ultimately determined by <u>enzyme access to</u> <u>carbohydrates and sugar release</u>
- HTP assays are needed to assess recalcitrant phenotypes and to screen for more effective enzymes
- 1st tier assays:
 - >1000 samples/week
 - Evaluate base-line susceptibility of pretreated biomass as well as enzymes from natural diversity
- 2nd tier assays: ~200 samples/day
 - Hits from primary screen subjected to multi-dimensional assays using engineered enzyme cocktails for precise assessment of cell wall changes

Populus Association Study

- Tested for enhanced sugar release characteristics through pretreatment and enzymatic hydrolysis
 - Hot water pretreatments at 160 and 180°C
- HTP pretreatment and co-hydrolysis in 96 well-plates
- Preliminary observations:
 - Sugar yield increases with S/G ratio
 - Lignin content has minimal effect
 - Some outlier poplar samples exhibit very high sugar release
- Characterization pipeline works

Pretreatment conditions: O 180°C, 18Min O 160°C, 68Min

Standard BESC poplar Theoretical sugar yield

Studer, Wyman et al.

Detailed Analysis of Specific Samples Inform Cell-wall Chemistry and Structure

Analytical Pyrolysis of Low Lignin Alfalfa

36 minutes of analysis for 6 (x3) samples

34

Solid State 13CNMR Spectroscopy

CARS (Coherent Anti-Stokes Raman Scattering) Imaging of Lignin in Interfascicular Fiber Cell Walls in Alfalfa

CML: Compound middle lamellae; SW: secondary cell walls

S-Y Ding (NREL) and X. S. Xie (Harvard)

<u>36</u>

tools under BER imaging grant; sample analysis under BESC, MS in preparation BioEnergy Science Center

U.S. DEPARTMENT OF

FR

Preliminary Conclusions from Detailed Analysis of Alfalfa Mutants

- Crosslinking between polymers is critical
- Altered localization does occur in mutants
- Crystallinity was not a major factor
- Multiple techniques on same samples add insights in the hands of experts

Strategy Part 3: Identify, Understand and Manipulate "Biological Catalysts" to Overcome Recalcitrance

Exploring Novel Environments

- Rumen endosymbionts
- Caecum endosymbionts
- Coleopteran larvae
- Biotraps
- Shipworms
- Fungi

Sequencing of 3kb and 8kb Insert Libraries (Plasmids) and 40kb Fosmid Insert Libraries -Distribution of Glycoside Hydrolases

- 220 glycoside hydrolases present on 6688 contigs (6M bp total)
- GHase families 2, 3, 31, 38 and 43 are most abundantly found

U.S. DEPARTMENT OF

Niels van der Lelie et al.

<u>40</u>

Clone Library Activity Screening

- Rumen endosymbionts, Caecum endosymbionts
 - Animals—18
 - Microbial samples—13
 - DNA extracted—5
- Coleoptera larvae gut endosymbionts
 - DNA extracted—21 larvae
 - Clone libraries constructed—3
- Biotraps
 - DNA extracted—21 unique biotraps
 - Ribosomal diversity analysis in progress
- Shipworm endosymbionts
 - Specimens— >100
 - Preliminary dissection and microbial isolation complete
- Fungal isolates
 - DNA extracted—78 unique isolates

<u>GigaMatrix[®] plate</u> <u>400K wells, 50nL/well</u> <u>200K clones/plate</u>

Microbial Hydrolysis and Enzymatic Hydrolysis: A Fundamentally Different Relationship Between Microbes and Cellulose

Enzymatic hydrolysis (classical approach)

- Hydrolysis mediated by CE complexes
- Enzymes (several) both bound and free
 - Cells may or may not be present

Yeast, enzymes with biomass, Dumitrache and Wolfaardt

- Hydrolysis mediated mainly by CEM complexes
 - Enzymes both bound and free
 - Cells both bound and free

C. thermocellum on poplar, Morrell-Falvey and Raman, ORNL

Biodiversity Access for New Biocatalysts

- What is the upper temperature for cellulose degradation?
- How do is it done?
- Can we make it better?

Sampling at Yellowstone National Park, October 2007 and July 2008

High-Throughput Isolation Using Flow Cytometry

Establish consortium

Select different gates

Identify members

Anaerobic inc. @ 75 °C

Flow-cytometer

ΔpH indicates growth

Caldicellulosiruptor sp. OB47

BioEnergy Science Center

Growth of *Caldicellulosiruptor sp.* OB47 on insoluble substrates

Schematic of Cellulosome

(adapted from Carlos Fontes, 2007 Gordon Research Conference on "Cellulases and Cellulosomes")

C. thermocellum Cellulosome was Analyzed under Several Conditions

- Grown on cellubiose, Avicel, and pretreated switchgrass at ~1L
- Cellulosome is released when growth slows
- Cellulosome isolation via affinity digestion method
- In-solution trypsin digestion, following by shot-gun proteomics (LC-MS/MS)
- Quantitative proteomics with ¹⁵N labeled substrates

Characterization of a *C. thermocellum* Mutant that Utilizes Cellulose Rapidly

Genome position Speedy 454 contigs

Speedy SNPs

CDS

<u>49</u>

ORNL wild-type 454 contigs

ORNL wild-type SNPs

07_HC_Differences_454_pyrosequencing - 72 Rows, Total Positions (149,324 - 3,833,352), Data Values -1.00 to 1.00

- 454 Resequencing identified 78 mutated loci in Speedy mutant
- 25 mutant loci common with ORNL wild-type strain
- Transcriptomics and further analysis underway

BioEnergy Science Center

Highlights 2008 until March 2009

- **185+** Scientific presentations at meetings and conferences worldwide
- 43 Scientific publications
- 17 Workshops and seminars for BESC researchers and graduate students
- **13** Inventions disclosed which are under evaluation by the BESC Commercialization Council and 2 additional in-preparation
- Scientific collaboration with the University of British Columbia has contributed over 250 additional *Populus* samples at no cost to BESC
- 80+ Presentations to Stakeholders (Secretary, Under Secretaries, Congressmen and Staff Members, Businessmen, etc.)
- 70+ Television, Print, and Radio Interviews
- Education program with the Creative Discovery Museum in Chattanooga, Tennessee to develop a Biofuels Outreach Lesson
- Co-sponsored Global Venture Challenge 2008 in April at ORNL

BESC Website

http://bioenergycenter.org/

- New website has been deployed
- Elements include
 - General information
 - Educational and professional level components
 - area for controlled access by BESC members
 - Inventions

	Home About BESC What is Bioenergy? Stude	nts & Kids Affiliates Contact Us
BioEnergy Science Co Turning	grass into gas.	
Ø		
Stefuel is considered a means of reducing greenhouss gas entistions and increasing energy security by providing an alternative to fossil fuels.	BioTV D ORIGI/01:00 CONSTICTION ORIGINALING CONSTICTION ORIGINALING CONSTICTION ORIGINALING CONSTICTION ORIGINALING CONSTICTION ORIGINAL AND POLICIAL ISSUES. BUT what are the solutions? The Department of Energy Bioenergy Science Center (BESC) was created to help	Kids Media Center Kids Media Center Researchers Researchers are working hard to find new green solutions to our countries growing energy needs.
	Elle gy blocher y solehoe Center (EESC) was created to help find out. BESC is a partnership for bioenergy solutions that's connecting the world's leading scientific minds and resources. Our goal is to help develop viable, plentiful and clean alternative fuel sources for generations to come. Like turning common switchgrass or soybeans into fuel that runs your car. Sound good? Check out our site to see some of the other	
P / RISH		

Retreat February 2008

<u>54</u>

Thank you Retreat December 2008

U.S. DEPARTMENT OF ENERGY

BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science

