

Environmental and Regulatory Sustainability of Genetically Engineered Bioenergy Feedstocks

The case of switchgrass

C. Neal Stewart, Jr. nealstewart@utk.edu

Biomass utilization is a multifactorial problem

U.S. DEPARTMENT OF

ENERG

Difference between petroleum and bioenergy feedstock

http://www.energyinst.org.uk/education/coryton/images/column.gif

Corn vs. cellulosics

Switchgrass

12 tons/acre

160 bu/acre = 4.5 tons/acre

Identify, Understand and Manipulate the Plant

Biomass Formation and Modification

Characterization and Modeling

Biomass Deconstruction and Conversion

Bioenergy and plant genomics: **Expanding the nation's renewable energy** resources

Yesterday

BioEnergy Science Center

Brian Davison ORNL

Cell wall structure

Nature Reviews | Molecular Cell Biology

Nature Reviews Molecular Cell Biology 2, 33-39 (2001)

Switchgrass biotechnology goals

- Enable high-throughput transformation
 - Tissue culture system
 - Transient expression tools
 - Stable transformation system
 - -Vectors for genes of interest
- Altering cell wall biosynthesis/modified lignin
- Transgenic plant-expressed cellulases and ligninases
- Increased yield/domestication
- Field performance
- Biosafety/biocontainment
- SUSTAINABILITY

Improvement of tissue culture and transformation systems

Agrobacteriummediated transformation

After 2-6 weeks place on rooting to root.

After 2 weeks place onto regeneration to form shoots.

Pick transgenic callus after two months on selection.

Reduces transformation procedure by 2 months
 Higher efficiency

What biomass crops where?

Lynn Wright et al., ORNL

12

But switchgrass is not the perfect choice

- Tailored feedstocks for needs
- Differences in adaptation
- Resource base
- Geographic and regulatory considerations

Ceres Product Pipeline

Switchgrass	Sorghum	Miscanthus	Energycane		
 Wide Adaptation Low Input Perennial Seed Establishment 	 Yield Adaptation Production System Low Water Usage 	• Low Input • Perennial	 Yield Production System 		

the energy crop company™

Disadvantages

- •Stand establishment •Lower yields than Misc.
- •Annual
- •Inputs
- •Bad candidate-biotech
- •Vegetative propagation
- •Low genetic variation
- •Agronomy

•Adaptation-cold •Vegetative propagation •Inputs

Potential biomass of switchgrass

15

Ideal bioenergy feedstock?

- Widely adapted
- ✓ High yield
 - Low inputs
 - Not recalcitrant to digestion and processing
 - Homogeneous/canalized traits
- Stress tolerant
 - Farmer friendly
 - Economically friendly
 - Ecologically friendly

Or recipe for guaranteeing invasiveness?

Life is full of choices

Platforms	Feedstock	NEB GJ/ha/yr	NER	CO ₂ Balance	Annual	Establishment	Germpla sm	Ag Practice	Ecological Benefits
Eethanol from starch or sucrose	Corn	10-80	1.5-3.0	Positive	Yes	+++	+++	+++	+
	Sugarcane	55-80	3.0-5.0	Negative	No	+++	+++	+++	++
	Sugar beet	40-100	2.5-3.5	Positive	Yes	+++	++	+++	+
	Sorghum - sweet	85-300	5-10	Positive	Yes	+++	++	++	++
Ethanol from Cellulosic feedstock	Miscanthus	250-550	15-70	Negative	Yes/No	+	+	+	+++
	Switchgrass	150-450	10-50	Negative	No	+	+	+	+++
	Poplar	150-250	10-20	Negative	No	+	++	++	+++
Biodiesel	Soybean	-20- 10	0.2-0.6	Positive	Yes	++	+++	+++	+
	Canola	-5 – 2	0.7-1.0	Positive	Yes	+++	+++	+++	+
	Sunflower	-10 – 0	03-0.9	Positive	Yes	+++	++	+++	+

Yuan et al. Plants to power:bioenergy to fuel the future, Trends in Plant Science, 2008 13:421

So, biotechnology could be a bioenergy game changer... what about regulations and public acceptance?

- Biotech food crops still have issues of acceptance and regulations
- But we don't eat dedicated energy crops
- Special problems with transgenic perennials
- Special problems with transgenic plants grown in their geographic center of diversity
- Gene flow is still a regulatory train wreck

Biotech tools to mitigate transgene flow: biocontainment

- Transgenes on chloroplasts
- Transgenic mitigation: tandem constructs
- Site specific recombination or zinc finger nucleases
- Tissue specific apoptosis → male sterility

Focus on limiting gene flow via pollen

GM gene deletor

Chopping transgenes out of pollen

Gene deletor (Luo et al. 2007 Plant Biotechnol J 5:263)

Gene deletor (Luo et al. 2007 Plant Biotechnol J 5:263)

Tissue-specific apoptosis

Killing pollen cells before they can pollinate

Agroinfiltration—a means of rapid assessment of gene expression

Agroinfiltration—marker gene

Tissue specific apoptosis

Conclusions

- The choice of feedstock is critical—no clear perfect choice, but lots of ways to go wrong
- Switchgrass will benefit from biotechnology
- Switchgrass tissue culture system and transformation tools are available
- Regulatory concerns: gene flow and controlling gene flow are both important
- Transgenic switchgrass will require biocontainment for deregulation
- Several biocontainment tools are available
- We must learn from our past mistakes

Stewart Lab

Thanks also to Yi Li David Ow USDA funding in addition to \$ from Sungrant and BESC BESC team Geres for use of slide

