Ethanol from Cellulose Faster

J .W. Walkinshaw, PhD, P.E.- MA University of Massachusetts Lowell S.E. Poniatowski, MBA TerraSonics LLC

Biofuel Goals

Replace 30% of current gasoline consumption with ethanol (60 billion gallons) by 2030. (1.43 gallons of ethanol = 1 gallon of gasoline),
Produce ethanol from non-food sources.

•Reduce conversion cost of cellulose to ethanol to \$1.07/gallon by 2012.

Why Ethanol?

•Mature fermentation technology.

•Fermentation can be economically sound at current oil prices.

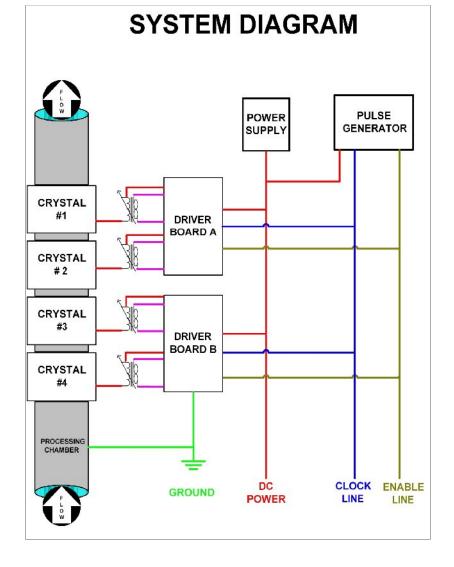
Why Not Corn?

Corn Based Ethanol Feasibilty

	2007 Actual Production	2030 Production Goals
Ethanol (gallons)	6.5 billion	60 billion
Feed Source	Com	Com
Feed Source Required	2,353,000 bushels	21,720,000 bushels
	(18 % of 2007 com crop)	(1.66 times 2007 com
		crop)
Land Mass Required	15.6 million acres	144.8 million acres
U.S. Arable Land	465 million acres	465 million acres
% U.S. Arable Land	3.4 %	31.1 %

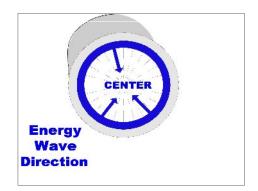
Cellulose from Discards

	Cellulose Feedstock from Solid Waste Streams					Potential Glucose ¹	Potential Xylose ¹	Estimated Ethanol Production ¹	EPA Reported Municipal Discards for	USDA Industrial/Agricultural Discards	Estimated National Potential Ethanol from MSW	Estimated National Potential Ethanol from Industrial
	Cellulose	Hemi- cellulose	Lignin	Extractive s	Ash	-			2006 ²	Estimates for 2005 ³		Discards
	weight percent (dry material basis)					kg per 100 kg dry feed stream		Gallons per ton dry feed stream	Thousands of tons	Thousands of tons	Millions of gallons	Millions of gallons
Hardwoods ⁴	40-50	17-35	18-25	1-5	0.4-0.8	39-49	12-25	85	7,170⁵	10,000	616	850
Short Rotation Hardwoods ⁶	50	23	22	5		49	16	91				
Softwoods ⁷	45-50	25-35	25-35	3-8	0.2-0.5	44-49	18-25	95	1,800 ⁸	10,000	170	950
Wood Bark ⁹	20-30					19-29		36		10,000		360
Stalk Fibers, Grasses ¹⁰	33-38	15-18	17-19	37-32	6-8	32-37	10-13	49				
Grasses, Lawn Clippings ¹¹	45	30	15		10	44	21	89	12,300 ¹²		1,096	
Agricultural Residues ¹³	38	32	17		13	37	22	62	15,065 ¹⁴	113,000	934	7,000
Orchard Grass ¹⁵	32	40	4.7			21	28	62				
Leaves ¹⁶	15.3	10.5	43.8			15	7	30	17		17	
Textile Waste – Cotton ¹⁸	98	0	0		2	96		145	850 ¹⁹		124	
Food Wastes ²⁰	46.1	6.2	8.3		39.5	45	4	72				
Mixed Office Waste (MOW)	80	1	1		18 ²¹	85	6	135	12,190 ²²		1,650 - 1,712 ²³	
Old Corrugated Containers (OCC) ²⁴	57.3	9.9	20.8		12	56	7	92	8,800		812	
Old Newspaper (ONP) ²⁴	48.5	9	23.9	18.6		47	6	78	2,040 ²⁵		158	
Post-Consumer Coated Papers (CP) ²⁴	42.3	9.4	15	33.3		41	7	56	1,530 ²⁶		85	
Post-Consumer Sanitary Towels ²⁷	75	5	0	0		73	4	115	3,430 ²⁸		394	
Total Estimate											6,039	9,160


Cellulose Issues

- Cellulose is a component of complex physical structures (e.g. fibers containing cellulose, hemi-cellulose, lignin).
- Processing fiber is challenging: Dewatering, clumping, balling, hanging, Expensive to mix or pump.
- Crystalline cellulose regions within the fiber inhibit enzyme penetration.

Enzyme Issues


- Feedstock structures inhibit enzyme activity.
- Products produced by enzyme activity can inhibit further enzyme activity.
- Low saccrification reaction rates.
- Enzymes activity cannot always be accelerated by increasing process temperatures as enzymes can sometimes be denatured by high temperatures.

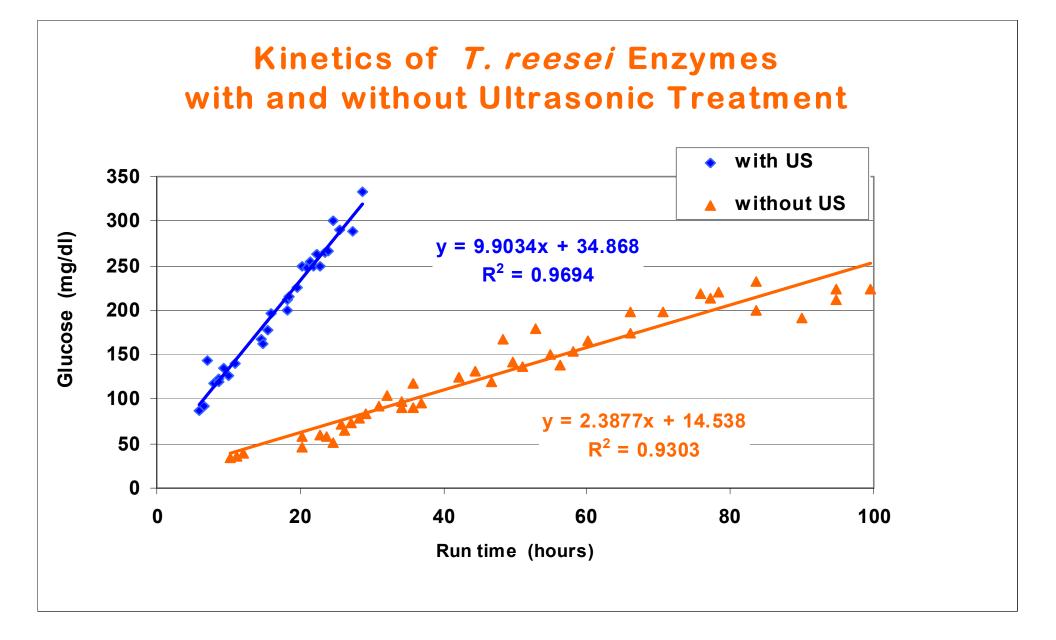
Test Unit

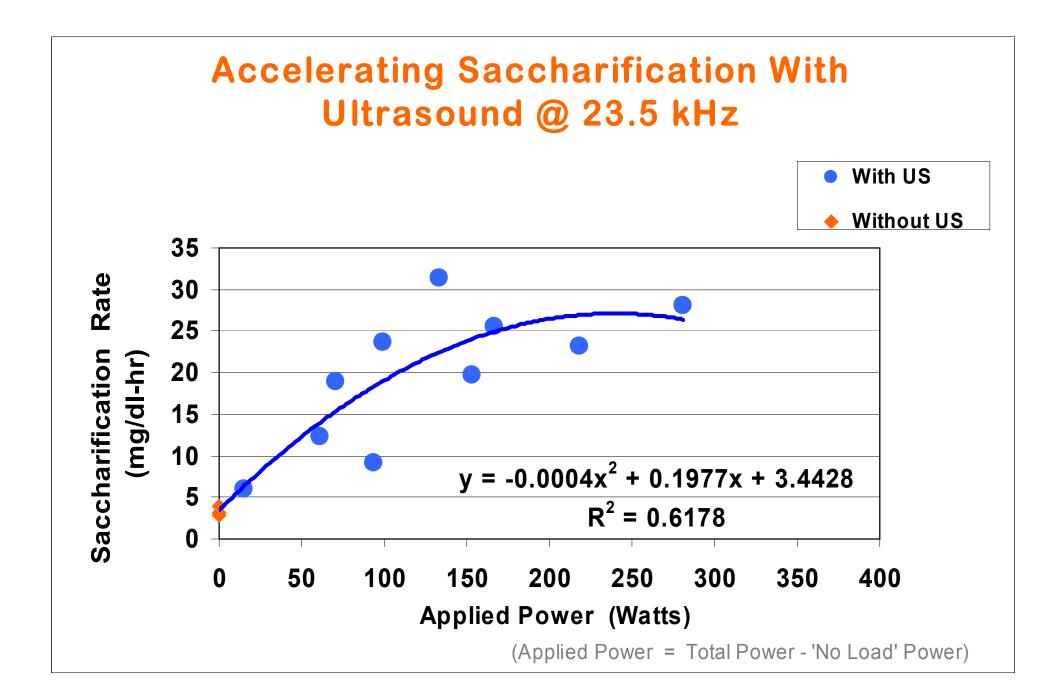
Process Tube 5GS-1.6x

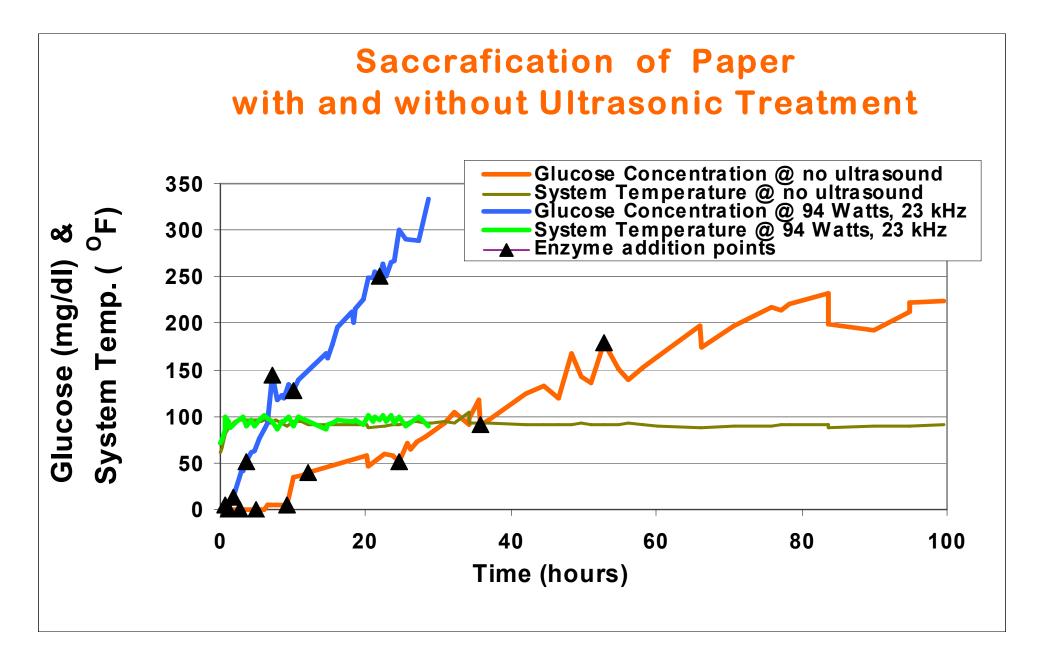
Experimental Procedure: Set-Up

Equipment: Without Ultrasonics – 2 liter beaker with heating & agitation With Ultrasonics – Process Tube 5GS-1.6x (as shown)

Paper stock: 500 ml of thick stock (100 grams waste office papers paper per 3.0 liters water)


Additives: 2-ml Antibiotic to retard bacteria growth (25 mg of chloramphenicol dissolved in 1 ml 95% ethanol)


> 5 ml of buffer solution (0.1 M citric acid solution in water)


Final step: Add water to dilute to 1500 ml

Experimental Procedure: Trial

- Procedure: Add diluted stock to beaker/tube. Start circulating pump, ultrasonic generator (23.6 \pm 0.1 kHz), adjust power level.
- Allow temperature to rise, or provide heat to circulation loop, until a temperature of 92°F is reached. Maintain temperature at 95 ± 4 °F.
- Add 5 ml enzyme solution Cellulase from *Trichoderma reesei* ATCC 26921start run clock. Additional 1-ml quantities of enzymes added at 2-hour time intervals.
- Check glucose, power level temperature at timed intervals.

Conclusions

- Conversion of cellulose to glucose is **FOUR times** faster when ultrasonic energy is applied.
- Substituting ethanol (made by fermenting cellulose) for gasoline is one way for reducing U.S. dependence on gasoline for transportation; other technologies and fuels are needed.

Acknowledgements

- Thanks are due J. Poniatowski and S. Poniatowski of TerraSonics LLC for technical support and R.Silver of Kraft Foods for providing the impetus for ultrasonic enzyme research.
- This project was funded by TerraSonics LLC.
- Equipment design and development has been provided in part by the Lindbergh Foundation, Montague Machine Co., and by TerraSonics LLC.

For Further Information

Ms. Susan Poniatowski TerraSonics, LLC 978-692-3274 email: Suponiatow@aol.com

Dr. John Walkinshaw University of Massachusetts Lowell 978-934-3159 email: John_Walkinshaw@uml.edu

