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What Are Bio-Ethers

¥ Bio-Ethers are produced by dehydration of bio
based alcohols

F Bio-Ethers have superior combustion and
emission characteristics as compared to other
bio-fuels
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What Are Bio-Ethers

+ Can Be Produced by :

B Partia oxidation of biomass to synthesis gas and then to
alcohols and then dehydrating them to Ethers using suitable
catalysts

B The achievable yield of bio-ether from biomass via the
gasification/synthesis gas route is higher than via the
hydrolys s/fermentation route

B In gadfication/synthesis gas route all carbon can be
converted to fuel while in fermentation rout only carbon
convertible to sugar can yield fuel
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Ethers in Fuel Industry

@  Dimethyl Ether (DME) v Alternative Fuel for CI engines
A Diethyl Ether (DEE) v" Used as a ignition Improver
v" Possible Alternative Fuel For CI
engines

@ Methyl Tertiary-Butyl Ether (MTBE) | Additive for gasoline

1 Ethyl ter-butyl ether (ETBE) v Additive for gasoline
m  Ter-amyl methyl ether (TAME) v Additive for gasoline
m  Ter-amyl ethyl Ether (TAEE) v" Additive for gasoline
v"Increases the solubility of ethanol in
diesel
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Property DF-2 FT Bio- Gasoline | CNG | Methanol | Ethanol DME DEE
Diesel Diesel diesel
Boiling Point, °F 370 - 350-670 36 - 80 —437 n.a. 149 172 -13 94
650 640

RVP, psi @ 100 °F <0.2 n.a n.a 8-15 n.a 4.6 2.3 116 16.0
Cetane Number 40 -55 >74 >48 13-17 Low Low <5 >55 >125
Auto ignition ~600 ~600 - 495 990 867 793 662 320
Temperature, °F
Stoichimetric Air/ 15.0 15.2 13.8 145 16.4 6.45 9.0 8.9 11.1
Fuel Ratio, Wt/Wit.
Flammability Limits, 7.6 - - 6.0 13.9 36.9 19.0 27.0 95
Vol. %: Rich 36.0
Flammability Limits, 14 - - 1.0 5.0 7.3 4.3 3.4 1.9
Vol. %: Lean
Lower Heating 18,500 18,600 16,500 18,500 20,75 8,570 11,500 12,120 14,571
Value, Btu/lb 0
Viscosity, 40 2.1 35 34 - 35 1.19 - 0.23
centipoises at ()°F (68) 100) (100) (68) (100) (68) (68)
Density, Ib/gal 7.079 6.520 7.328 6.246 - 7.328 6.612 5.50 5.946

* Table compiled by N.R. Serer, Southwest Research Institute. SAE paper No : 972978
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Emission Regulations
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Role of DME in meeting Emission Regulations
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B Dueto expensive production initially DME was considered
as ignition improver for other fuels, mainly methanol

B DME has been tested in a number of direct injection diesel
engines, ranging in size from 273 to 1220 cm?/cylinder

B Inall of these studies, soot-free operation has been
observed

B NOx emissionisfound to be generaly lower with DME,
however some studies have reported equal or even higher
NOx emission as compared to diesel
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Benefits of DME Challenges with DME

@ High Cetane Number _ _
®= Low Viscosity

®  Smokeless combustion .
= Low Lubricity

= High Volatility Storage Sy
= Storage System

#  LPG Infrastructure can be
used for transportation and
Storage.

= Seal Compatibility

Automotive Fuels and Lubricants Application Division, IIP Dehradun



Zoeres Diesel Baseline
B DMVE + Oxi. Catalyst

Road Load Emission and Fuel Consumption

Road load test data comparing engine emissions using diesel and neat DME

J. McCandless, DME as an Automotive Fuel: Technical, Economic and Social Perspectives Energy Frontiers Conference, 2001
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LCA Emissions of Hydrocarbons
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Combined Emissions from Production, Distribution and Use in vehicles from various Fuels

Data obtained from the Swedish Petroleum I nstitutes 1999
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DME Vehicles

* DME, the long term future fuel for VTC, Q3, 1996 :
» 1* generation HD DME prototype vehicle 194 .. %

ﬂ.cwﬁql.vn 9L) 7}

- |
iy = .

2003China DME /
forum (Shanghat) '
(LPG+DME)

Spark ignition Engine
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Estimated Costs of Meeting US 2007 HDD Emissions

Costfor |Costfor
Emissions Control Device [Diesel DME Source
Base Engine $18,000| $18,000|est.
Injection System $1,800| $1,000|est./Quotes
Fuel Storage & Conditioning $500| $1,000|est./Quotes
Cooled EGR System $439 $439|EPA
VG Turbo $373 $373|EPA
Electronics $500 $500|est.
Catalyzed Particulate Trap $1,103 0|EPA
NOx Adsorber $1,456 0|EPA
Oxidation Catalyst $338 $338|EPA
Total Cost $24,509| $21,650
Cost Savings $2,859

Source: AVL Power train Technologies, Inc
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Environmental Concerns

2 Non-Toxic to Humans

12 Not Carcinogenic and Non Mutagenic
2 Very Low Reactivity

2 Short Half- Life in Troposphere

i3 Long, Positive Experience
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Relative Well to Wheel CO, Emissions

% Heavy Duty = % Light Duty

Gasoline

FT Diesel

Current Diesel

Bio DME

0.2 0.4 0.6 0.8
Relative CO2 Emissions (%)
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Relative Ozone Forming Potential Typical Formaldehyde Emissions
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Economics of Production

B2 Theinvestment cost for acommercial scale Bio-DME plant
producing 200,000 tons of DME per year has been estimated
at approximately €390 Millions at agreen field location

\

However, if oxygen and utilities can be purchased “over the
fence’ at an industrial site the total investment may be
reduced by about € 100 Millions

\

For these two location alternatives, the production cost of
Bio-DME has been estimated at € 393 - €438 per ton of
DME or about €0.49 - €0.55 per litre of diesel equivalent

The Bio-DME Project Report to Swedish National Energy Administration, 23April 2002
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1 ton Wood fuel 0.37 ton of DME
Generation of ’ DME Incl. wood fgr
— Plant ) | POWEr gENEY ation
aI;gCIIaBt 3? ct)(\)/\r/]er 0.29 ton/ton

Figure: Yield of DME ton/ton of biomass feed

1 GJ LHV Wood fuel, 0.63 GJ of DME
El. Power 0.07 GJ 0.58 GJ per GJin
Generation of all plant DME ( wood+ €. power)
power m— FEN: e — Incl. wood for
add. 0.3 GJ power generation
0.49 GJ

Figure: Energy efficiency for production of DME from biomass

The Bio-DME Project Report to Swedish National Energy Administration, 23April 2002
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Pre—prﬂcessing DME can be produced from natural gas or wood
(Brandberg, et al,L1997)
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E  Ahlvik, P. and Brandberg, ( 2001) showed that bio-DME
IS the most energy efficient bio-fuel to produce both in
terms of fuel production and well-to-wheel efficiency
(total system efficiency)

¥ The EUCAR/CONCAWE/JRC well-to-whedl project
reached the conclusion that net emission of CO2 from a
diesal engine running on bio based DME are very low
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Cost of CO, Avoidance with Biomass

€/t CO2 avoided

500

400

300

200

100

Conventional
biofuels

Max ethanol Max Syn- Max DME Max hydrogen Max hydrogen
diesel (ICE) (FC)

Well to Wheel analysis of future automotive fuels and powertrains in the European context
Jean-Francois Larivé, CONCAWE ,June 2006
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Diethyl Ether
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E First ether engine was a combined water-ether steam engine. It
was built in Marseilles in 1850 for marine application

B From 1919-1923 in British Guiana an alcohol based motor fuel
named Alcolene was produced from sugarcane molasses
which consisted of 63% ethanol, 35% DEE, and 1% gas oll
and pyridine

F Near the end of World War 1., blending DEE to ethanol was
adopted as an acceptable method to improve performance of
ethanol 1n Japan

B Antonini (1981) reported DEE as a option for diesel engine
fuels by mixing it with vegetable oil and/or diesel fuel
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Benefits of DEE Challenges with DEE

#  Very High Cetane
Number

= Stability in Storage
®  Reasonable Energy

Density @ Lower Lubricity

® Liquid a room

#  Seal Compatibility
temperature
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|nformation available on engine testing on DEE is limited

Particulate emission from a DICI Engine running on DEE
were found very low relative to the diesel fuel

It has been shown that 5% DEE/Diesel blend gives better
performance and low emissions compared to other blends of
DEE and diesel fuel

Testson Volvo AH10A245 diesel engine using ethanol DEE
blends indicate that it is necessary to mix in at least 50% DEE
In order to run the engine over the whole range of operation
and 60% is recommended
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100 0 158.2
75 25 102.2
50 50 68.5
25 75 515

0 100 42.9

75 25 61.1
50 50 19.0
25 75 12.2
0 100 12.1

Cetane Number Determination

[J. Erwin.1997]
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Ignition Delay Impact from Toluene Blended
with DEE. [Clotheir ,1990]
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Diesel (ml) DEE (ml) Cetane Number
1000 0 49.2
950 S0 @
924 76 52.8
900 100 7 50.8
Fuel Cetane
Number
Diesel 53.2
Diesel+10 %Ethanol 52.8
Diesel+10%Ethanol +10%DEE 50.8
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Environmental Concerns

i3 Non-carcinogenic, non-teratogenic, non-mutagenic, and
non-toxic

i3 Reactivity of DEE is 5 times higher than MTBE. DEE is
estimated to be stable for approximately nineteen hours

12 Studies about well-to-wheel green house gas emissions and
tall pipe aldenyde emissions from DEE are required
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Economics of Production

= DEE can be manufactured by dehydration of bio-ethanol
using an acid clay catalyst with 90% conversion

2 NREL conducted a process simulation exercise which
showed that hydrous ethanol could be converted to DEE

¥ The analysis shows that the cost of fuel grade DEE would
be only dlightly higher than that of anhydrous ethanol
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Benefits of Bio-ethers

Bio-ethers have a potential to substantially cut down GHG emissions

Bio-ethers considerably reduces smoke and PM. This enables use of very
high EGR rates for NO, reduction without jeopardizing the life of engine
due to excessive wear.

Emissions of VOC and CO are of the same magnitude as diesel.

Bio-ethers are non- corrosive to metals and do not require special materials
for structural components of fuel systems.

Bio-ethers are sulphur free; thisfacilitates the use of effective after
treatment devices.

Bio-ethers can be used in DI diesel Engines without major modifications.
Therefore field retrofit is possible.
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Conclusion

€ Among all the biofuels, bio-ethers seem to
be very attractive as Alternative
transportation fuel due to their energy
efficient production, higher well-to-wheel
efficiency and substantially low GHG
emissions.
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System efficiency (well-to-wheel) for various fuels and powertrains
Best fuel/powertrain combination for each fuel - fuels from biomass
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