advanced

April 20-21, 2009 Marriott at Metro Center Washington, DC

accelerating innovation to commercialization

WELCOME

- **TO CAMBRIDGE HEALTHTECH INSTITUTES**
- 2nd INTERNATIONAL
- **Advanced Biofuels Development Summit**

Accelerating Innovation to

Commercialization

OPENING REMARKS

THANK YOU

- CHI ORGANIZERS
- SCIENTIFIC ADVISORS
- WORKSHOP LEADERS
- CORPORATE SPONSORS

Corporate Sponsors

ICM, Inc,. McKenna Long and Aldridge

Media Parteners

Advanced Biofuels Argus Media Biofuels Digest Bio-IT World BioMedCentral Biotechnology for Biofuels Emerging Markets Online Science AAAS The Scientist

> accelerating innovation to commercialization

Corn Futures (C) Delayed 10 minute data as of April 02, 2009 16:53 CDT

Soybeans Futures (S) Delayed 10 minute data as of April 02, 2009 16:53 CDT

USDA NASS: USDA EXPECTS TOTAL CORN, SOYBEAN ACRES ON PAR WITH LAST YEAR

USDA National Agricultural Statistics Service (NASS)

EXPECTS TOTAL CORN, SOYBEAN ACRES ON PAR WITH LAST YEAR

Principal Crop Area Expected to Decline Nearly 8 Million Acres

8 billion gallons of ethanol production per year, approximately 800 million gallons of corn oil is potentially available for biodiesel production

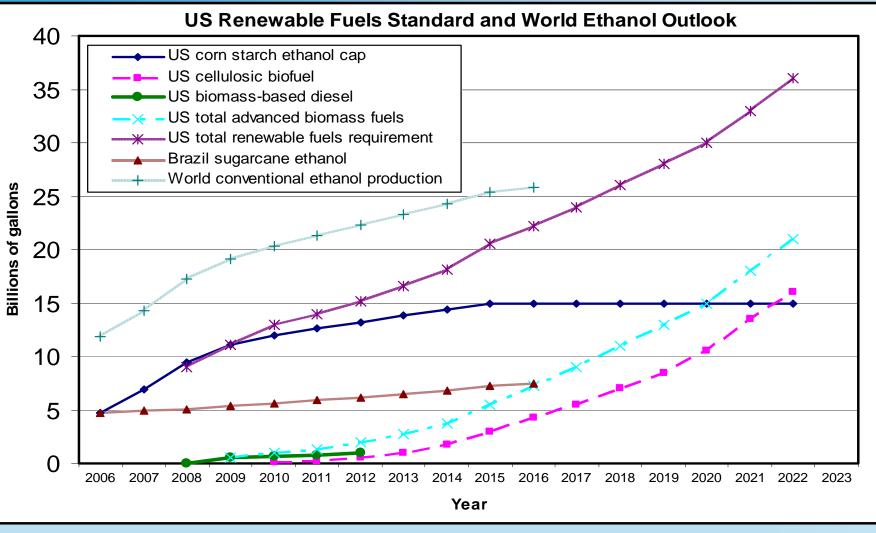
US Energy Independence and Security Act of Jan 2008 SUMMARY OF BIOFUELS ELEMENTS

- The <u>Renewable Fuels Mandate</u> 500 percent increase to 36 billion gallons of renewable by year 2022.
 Stimulus Package changes?
- 2. The Vehicle Fuel Economy Mandate specifies a national mandatory fuel economy standard of 35 miles per gallon by 2020.

FACTS

- Ethanol production has increased from 1.6 billion gallons 2000 to and estimated 7.2 billion gallons end 2008
- Next generation biofuels such as <u>cellulosic ethanol being tested in new</u> <u>format pilot refineries</u>.
- U.S. produced about <u>450 million gallons of biodiesel</u> up 80 percent from 2006.

Over the last five years, the U.S. invested about <u>\$1.2 billion in hydrogen</u> research



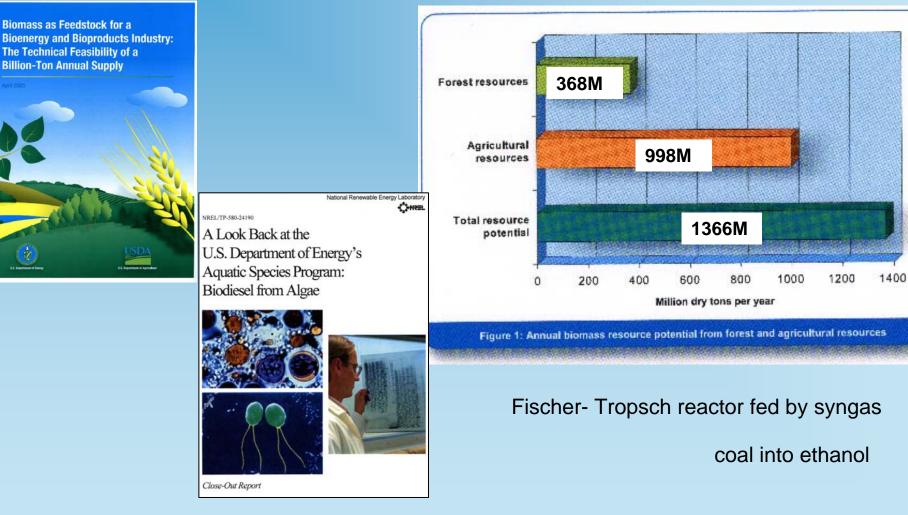
Net Energy: US energy needed to produce ethanol

	IL	IN	IA	MN	NE	он	MI	SD	WI	9-State Weighted average
					BTU/bus	hel				
Seed Fertilizer:	525	557	451	512	804	780	827	623	548	603
Nitrogen	25876	25446	20147	19305	24146	32764	26792	25257	19864	23477
Potash	2395	2798	1356	1285	474	2670	2669	907	1278	
Phosphate	2211	1897	1508	1283	1053	2142	1745	1721	1139	1631
Lime	76	79	73	0	0	89	97	0	255	63
Energy:										
Diesel	3853	4941	4609	5700	14136	5207	9558	6336	8576	7491
Gasoline	1478	2135	1138	1698	2266	1834	3141	2044	1536	3519
LPG	1644	1938	4067	5058	2635	3823	2694	406	1241	2108
Electricity	614	1868	1035	1739	10685	744	2081	2425	470	
Natural Gas	550	1063	0	332	7544	1363	2033	69	986	1846
Custornwork	2001	1197	1417	1294	1291	1434	1859	1913	2526	1581
Chemicals	3453	3464	2877	2134	2501	4530	4227	2664	2542	2941
Purchased water	0	0	0	0	946	0	0	0	0	136
Input hauling	143	167	178	176	242	209	254	121	251	202
Total	44821	47551	38856	40516	68723	57590	57977	44486	41212	49753

USDA 225

Global Ethanol Production

editor Nasib Qureshi, authors Hughes, S., Gibbons, W., Kohl, S. 2008 Wiley Books . Biofuels: Chapter 4


the energy of innovation"

South Dakota State University You can GO ANYWHERE from here."

BIOMASS TO FUEL

http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf

http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf

April 20-21, 2009 Marrlott at Metro Center Washington, DC

accelerating innovation to commercialization

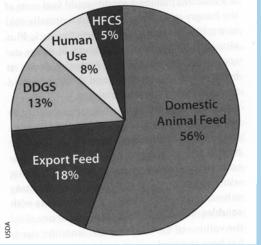
Date: April 21, 2009 at 11:35pm

Seminar Title: Anaerobic Conversion of Pretreated Lignocellulosic Sugars to Ethanol and Biodiesel: The GMAX-L Saccharomyces cerevisiae strain concept

Authors:

Stephen R. Hughes, PhD Ken Tasaki, PhD Bryan Moser, PhD Ken Doll, PhD Marge Jones, PhD Amanda Harmsen USDA, ARS, NCAUR, BBC Mitsubishi Chemical Corporation USDA, ARS, NCAUR, FIO USDA, ARS, NCAUR, FIO Ilinois State Univrsity Illinois Stsate I|University

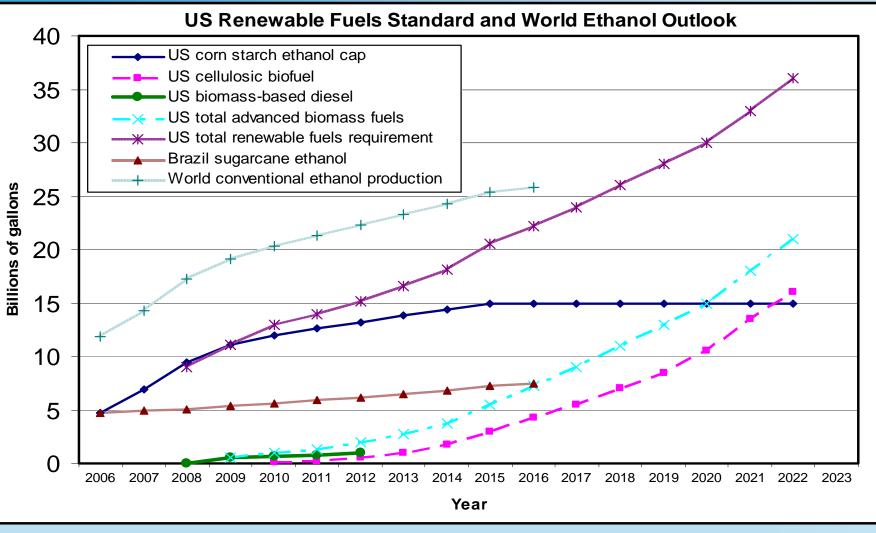
USDA ARS to boldly go.....



US Ethanol

- Corn starch
- Sugarcane
- Sugar Beets
- Potato starch
- Biomass

Sweet Sorghum



Global Ethanol Production

editor Nasib Qureshi, authors Hughes, S., Gibbons, W., Kohl, S. 2008 Wiley Books . Biofuels: Chapter 4

the energy of innovation"

South Dakota State University You can GO ANYWHERE from here."

Max Corn Use

2005 (present use)
Corn used 7.5%

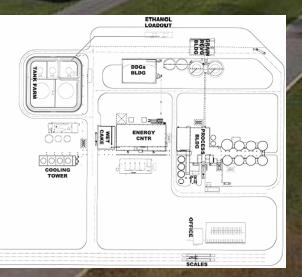
2010-2015 (corn cap)
 Corn use 13%

World Ethanol Production Statistics and Costs

Refinery Statistics Operations in 2007	Wet Mill	Dry Mill / Grind	Sugarcane	Lignocellulose	Combined Refinery ^H
AVG. COST OF PLANT	\$233.84 million	\$115.5 million	\$62.5 million	>\$375.00 million	>\$200.00 million
LIFESPAN OF PLANT ^B	>60 years	30-60 years	40-60 years	continuous	continuous
	\$188.46 mt	\$188.46 mt	\$42.00 mt	\$95.00 mt	<\$50.00 mt
	\$1.03/gallon	\$0.85/gallon	\$0.81/gallon	\$2.25/gallon	<\$1.07/gallon
	\$0.06/gallon	\$0.06/gallon	<\$0.01/gallon	\$0.30/gallon	potentially \$0
TOTAL ETHANOL PROFIT ^F	\$2.56 billion	\$16.77 billion	\$46.65 billion	\$0.051 billion	> \$70 billion
TOTAL COPRODUCT PROFIT ^G	\$5.05 billion	\$9.80 billion	\$6.64 billion	experimental	> \$100 billion

- A Based on first quarter 2008 average prices in US dollars.
- B Time projections made at time of refinery construction.
- C Average prices based on USDA ERS 2008 first quarter values in US dollars.
- D Cost in US dollars for plant operation in 2007 using sucrose refinery operation in Brazil or for wet and dry mill refinery operation in US Midwest.
- E Based on 2007 Novozyme and Danisco price levels.
- F Values represent world production levels for 2007 in US dollars based on Chicago Board of Trade ethanol average price in first quarter 2008.
- G Value of combined coproducts for 2007 in US dollars.
- H For concept plant using shared utilities and operational staff (crossover model from Center for Bioresearch and Development, South Dakota State Univ.)

SUGARCANE ETHANOL PLANT


Courtesy of Edward Richard, RL for sugarcane studies at ARS SRRC New Orleans and Houma, LA USDA sugarcane outstation Badger State Ethanol dry grind ethanol plant designed by ICM/Fagan joint design Located: at 820 W. 17th Street, Monroe, WI 53566.

14.8 million bushels of corn into approximately40 million gallons of ethanol,128,000 tons of DDGS, DWG128,000 tons of raw CO2 gas

1

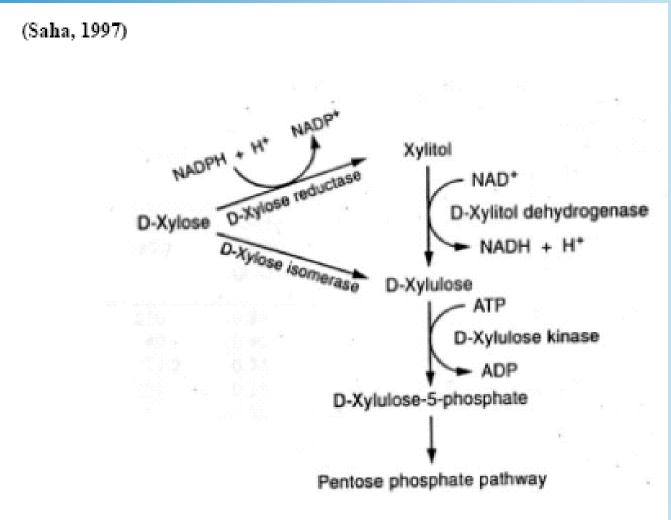
Picture courtesy of Gary Kramer, Badger state Ethanol, President

Aventine Renewable Energy 110 mgy Wet Mill

Courtesy G. Welch, Aventine Renewable Energy, Inc.

LIGNOCELLULOSIC ETHANOL PRODUCTION

- USDA Automation to Screen for Cellulosic Ethanol Yeast Transformed With XI and XKS
- Screened by Addition of Whole Fungal and Bacterial FLEXGene Libraries
- Screened Mated Library for Anaerobic Growth on Xylose

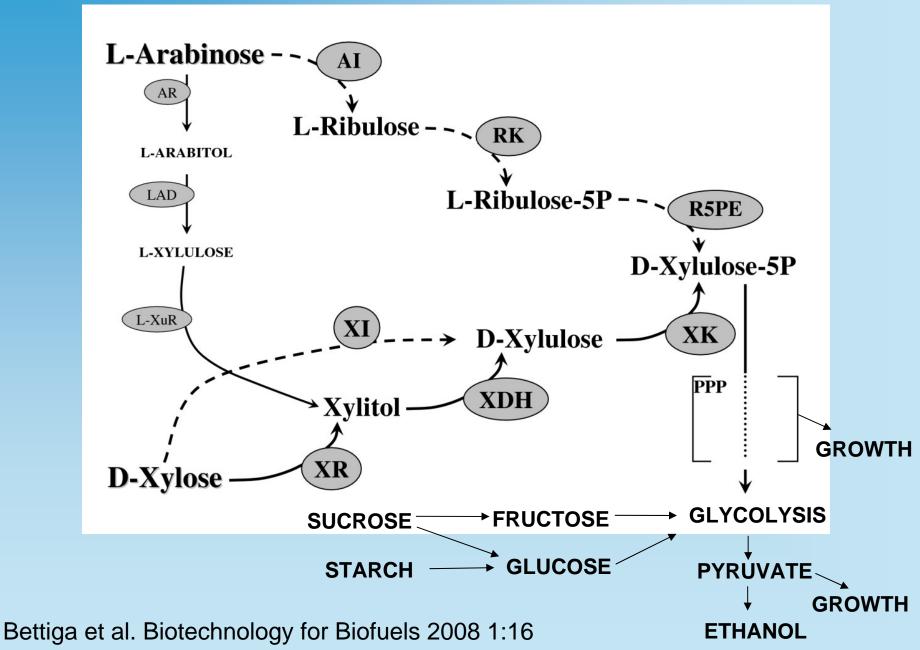


WHICH ETHANOLOGEN ?

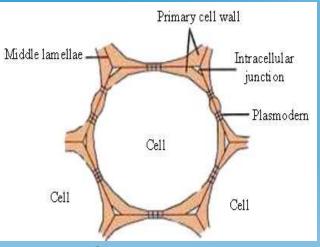
_							
	ETHANOLOGEN TRAIT TABLE	Saccharomyces cerevisiae	Scheffersomyces stipitis (formerly Pichia stipitis)	Candida Shahatae or Pachysolen tannophilus	Kluyveromyces marxianus	Escherichia coli (FBR2)	Zymomonas mobilis (Zm4)
	SUGARS METABOLIZED	glucose, sucrose, maltose, galactose, fructose, trehalose, isomaltose, raffinose, maltotriose, ribose, glucuronic acid and have been engineered to use lactose, xylose, arabinose	glucose, sucrose, maltose, galactose, fructose, trehalose, isomaltose, raffinose, maltotriose, ribose, glucuronic acid, lactose, xylose, arabinose, cellobiose, rhamnose, fucose, sorbose and maltotetrose	glucose, sucrose, maltose, galactose, fructose, raffinose, xylose, arabinose,	glucose, sucrose, maltose, galactose, fructose, trehalose, isomaltose, raffinose, maltotriose, xylose, arabinose, lactose	glucose, sucrose, maltose, galactose, fructose, glucuronic acid, galacturonic acid, xylose, arabinose, mannose	glucose, sucrose, maltose, galactose, lactose, fructose, xylose, arabinose, mellibiose, raffinose, mannose
I	SUGARS FERMENTED	glucose, sucrose, maltose, galactose, fructose,trehalose, isomaltose, raffinose, maltotriose,	glucose, sucrose, maltose, galactose, fructose, trehalose, isomaltose, raffinose, maltotriose, xylose, arabinose	glucose, sucrose, maltose, galactose, fructose,trehalose, isomaltose, raffinose, maltotriose, xylose, arabinose	glucose, sucrose, maltose, fructose, xylose, arabinose	glucose, sucrose, maltose, galactose, fructose, xylose, arabinose, mannose	glucose, sucrose, maltose, galactose, lactose, fructose, xylose, arabinose, mellibiose, raffinose, mannose
	MAXIMUM TEMPERATURE GROWTH	<44ºC	26-35⁰C	10-40ºC	<40ºC	<49ºC	27-37.5ºC
-	pH RANGE	3.0-8.0	4.0-7.5	3.0-7.5	4.8-6.3	4.8-6.3	5.5-6.8
	ETHANOL PRODUCTION /TOLERANCE	15-21% / <22-23%	4.4-6.0% / <10%	3.5-3.8% / <4.6-4.8%	6.0-11.1 / <22.5%	4.38% / <5%	8.1-10.5% / <15%
	CRABTREE TYPE	POSITIVE	NEGATIVE	NEGATIVE	NEGATIVE	N/A	N/A
	GENOME SEQUENCED	YES	YES	NO	NO	YES	NO
	FDA-CVM STATUS	GRAS	Possible GRAS	NOT GRAS	GRAS	NOT GRAS	NOT GRAS
	Sibbons and S. Hughes, Springer Verlag In Vitro Plant, Journal : Section on Cellulosic Biorefinery 2009						

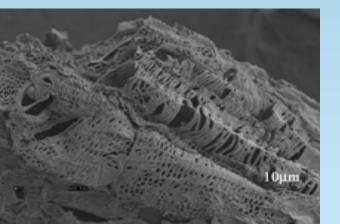
W. Gibbons and S. Hughes, Springer Verlag In Vitro Plant Journal : Section on Cellulosic Biorefinery 2009

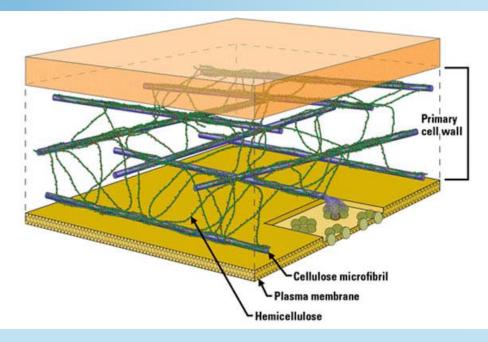
CELLULOSIC ETHANOL YEAST



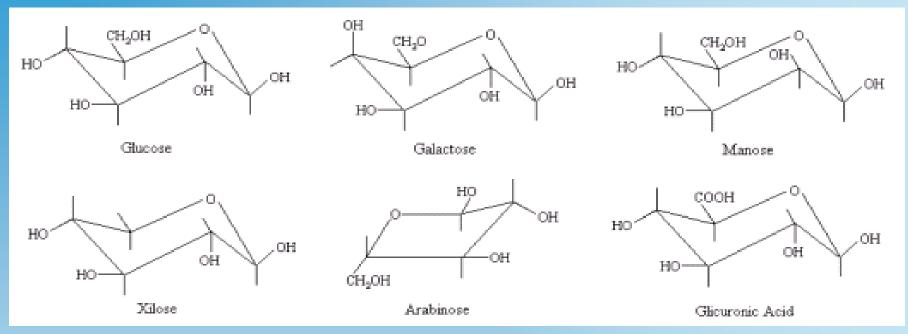
NEED AN ENGINEERED YEAST

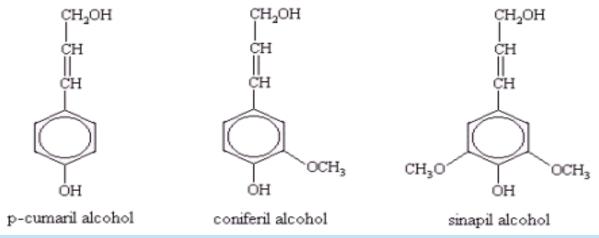

USDA


A GMAX-YEAST FOR CELLULOSIC ETHANOL FERMENTATION IN ADDITION TO OTHER ETHANOL FEEDSTOCKS?

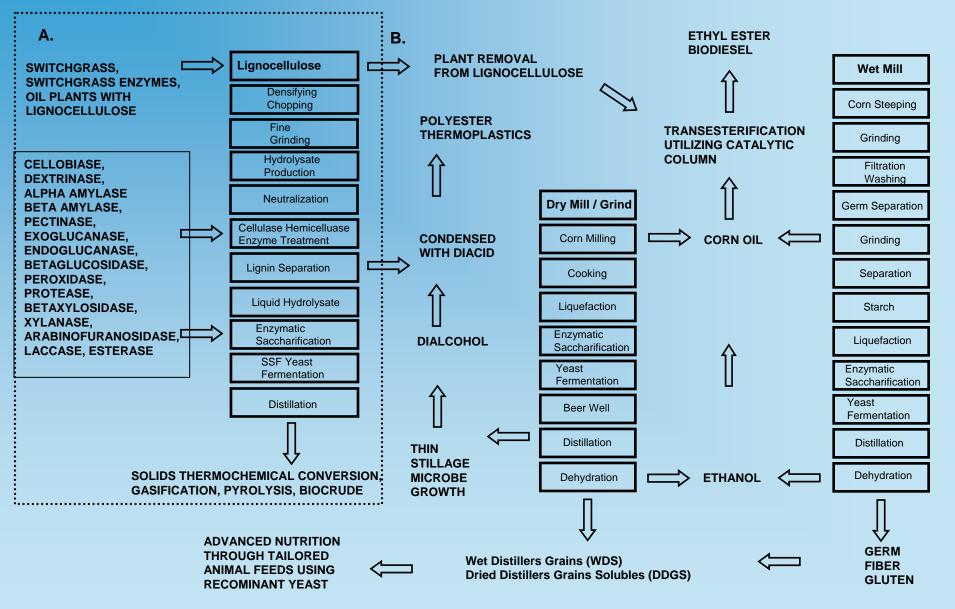

Lignocellulosic Hydrolysate: Corn Plant Sugars

30% Glucose 20% Xylose 11% Arabinose 5% Galactose 3% Mannose 21% Lignin 10% Protein (T. Leathers, USDA, ARS, NCAUR, BBC 1997)


Table. Composition of defatted corn ge	rm. From Timothy	Leathers USDA ARS
	Wet mill	Dry mill
Glucose from glucoamylase digestiona (mg g^{-1} dry wt)	148 ± 7	227 ± 4
Protein (mg g^{-1} dry wt)	251 ± 2	180 ± 2
Neutral sugars in trifluoroacetic acid		
hydrolysatesc		
Glucose (mg g ⁻¹ dry wt)	164 ± 9	285 ± 4
Xylose (mg g ⁻¹ dry wt)	101 ± 7	87± 2
Arabinose (mg g^{-1} dry wt)	110 ± 6	81± 15
Total (mg g^{-1} dry wt)	375 ± 13	453 ± 16


From Rose and Bennett (1999) Trends in Plant Sci. 4:176-183

ULTIMATELY: MONOMER SUGARS AND LIGNOL MOIETIES

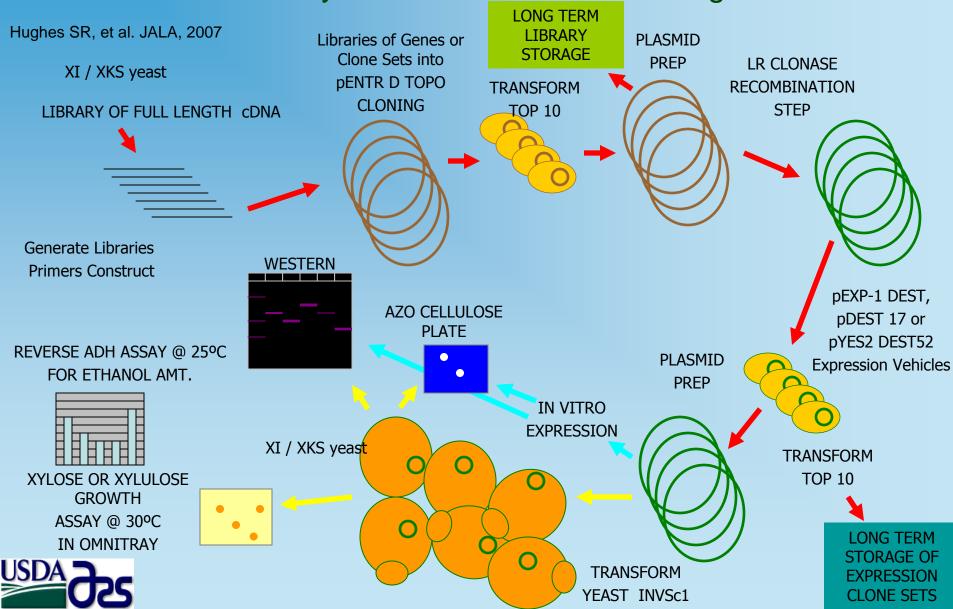

Chemical structures of the main components of cellulose and hemicellulose

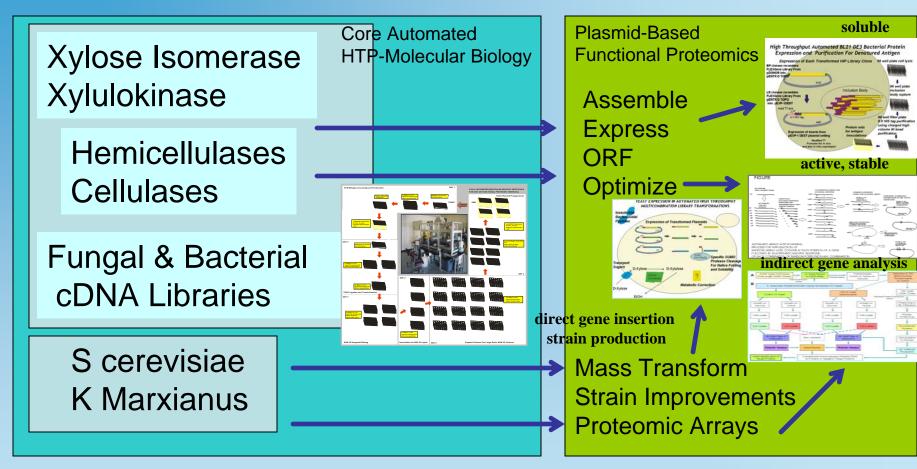
Chemical structure of the main components of lignin

Future Crossover Refinery

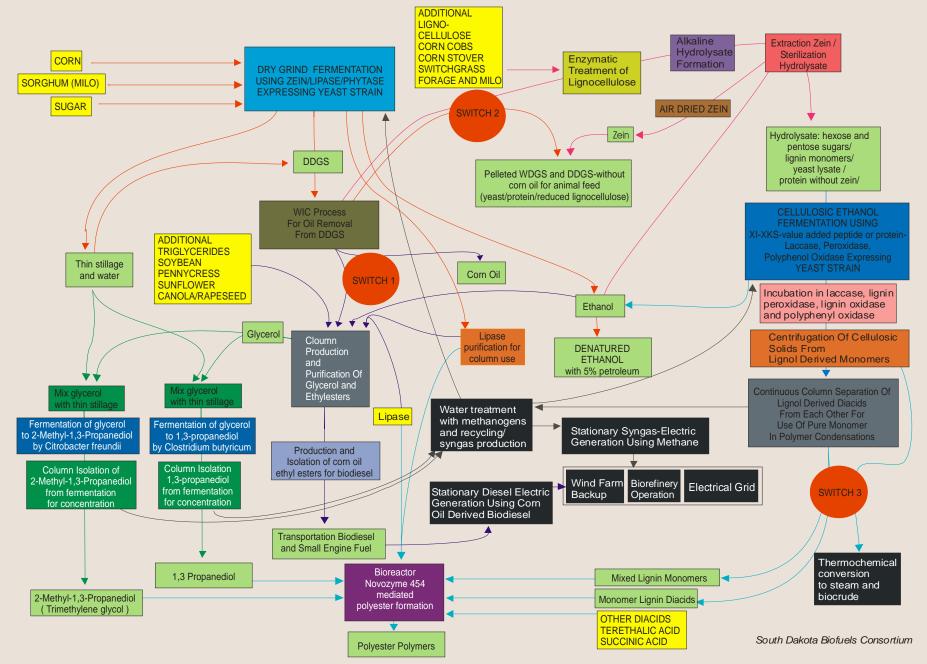
S. Hutchinson, K. Tasaki, J. Thomas, S. Hughes, W. Gibbons, S. Kohl, South Dakota Biofuels Consortium Section of CBRD

USDA NCAUR Automated Integrated Plasmid-Based Functional Proteomic Workcell


- Genes Assembly
- Amino Acid Scanning Mutagenesis
- Mass Transformations



Workcell Adapted Molecular Biology Paradigm Using Combination of TOPO ENTR Cloning of Libraries and Invitrogen Gateway® Recombinational Cloning



Engineer Yeast For Ethanol Production from Respective Feedstocks and Value-Added Products

★ Need Process: USDA proposal for cellulosic ethanologen According to National Program 213 (formerly NP307): http://arsserv0.tamu.edu/research/programs/programs.htm?NP_CODE=307

CROSSOVER BIOREFINERY DESIGN FOR COMBINED STARCH ETHANOL/ CELLULOSIC ETHANOL OPERATION CONCURRENT WITH BIODIESEL PRODUCTION AND POLYESTER PRODUCTION

AEROBIC YEAST GROWTH ON XYLOSE USING XX-STRAIN

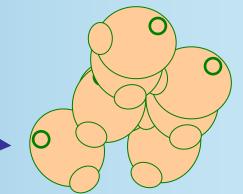
• 6 Hr. Doubling Time on Xylose

• 2 Hr. Doubling Time on Glucose

ANAEROBIC GROWTH OF Saccharomyces cerevisiae

• What gene is needed?

• What strategy can find this gene?


 Can this be added to the fast growing xylose utilizing S. cerevisiae XI-XKS-INVSc1?

Robotic Screening Using Yeast Mating Paradigm XI expressing To Isolate Anaerobic Diploid Yeast pJ694 MATa haploid

Selective growth in CM glucose - TRP

Diploid Mated pJ694 with XI and Library Clone in YPD

Diploid Mated pJ694

Selective growth in CM glucose -TRP-LEU

Diploid Mated pJ694

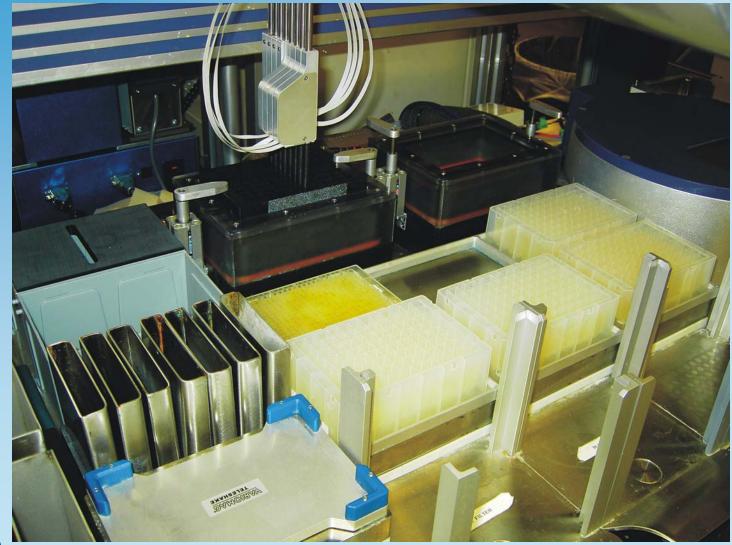
Selective growth in CM xylose -TRP-LEU Incubation at 30C Fully Anaerobic Conditions

5632 Full Length Yeast Clone Expression Library pJ694 MATalpha haploid Selective growth in CM glucose - LEU

16 x 384 well plates

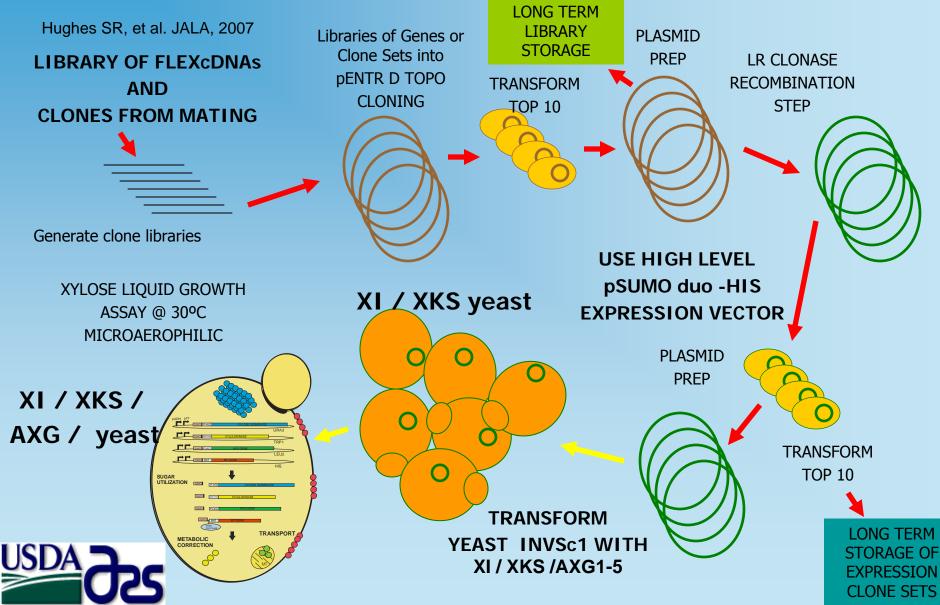
Glycerol Stocks Used to Start 300 mL Microaerophilic Xylose Growth

> Glycerol Stocks Made Microaerophilic Glucose


Isolate Colonies that grow Anaerobically on Xylose

Yeast Mating

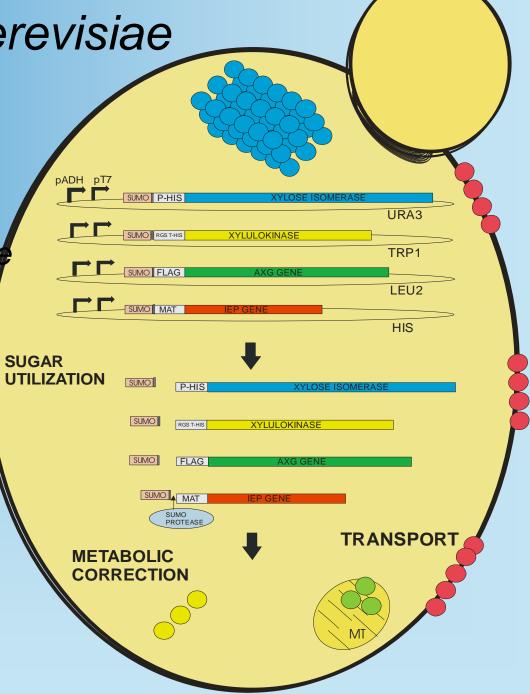
Broadcast Matings Into Yeast Selective Medium and Make Storage Glycerol Stocks


Spot Onto Xylose Anaerobic Plates

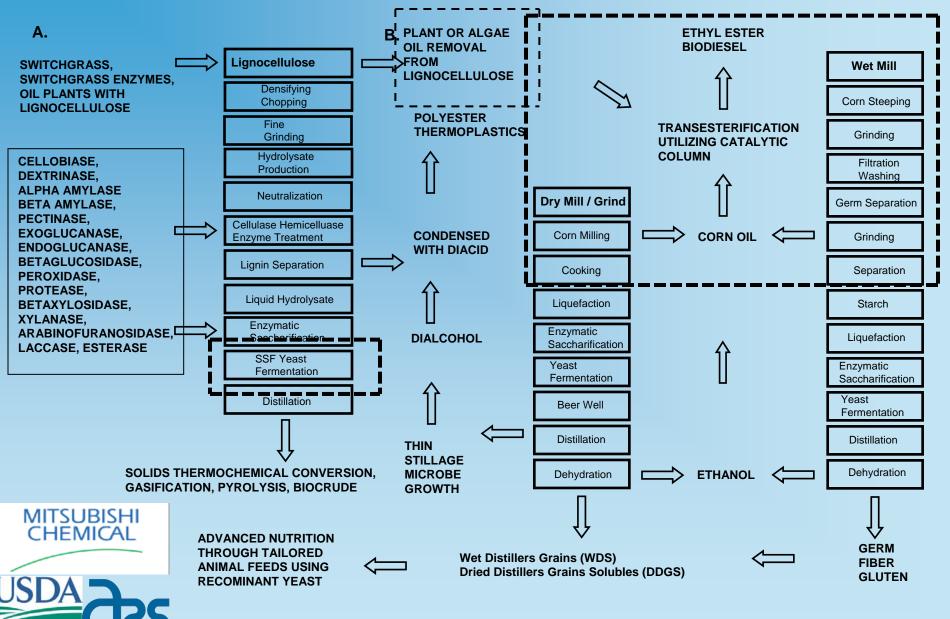
Workcell Adapted Molecular Biology Paradigm Using Combination of TOPO ENTR Cloning of Libraries and Invitrogen Gateway® Recombinational Cloning

Saccharomyces cerevisiae

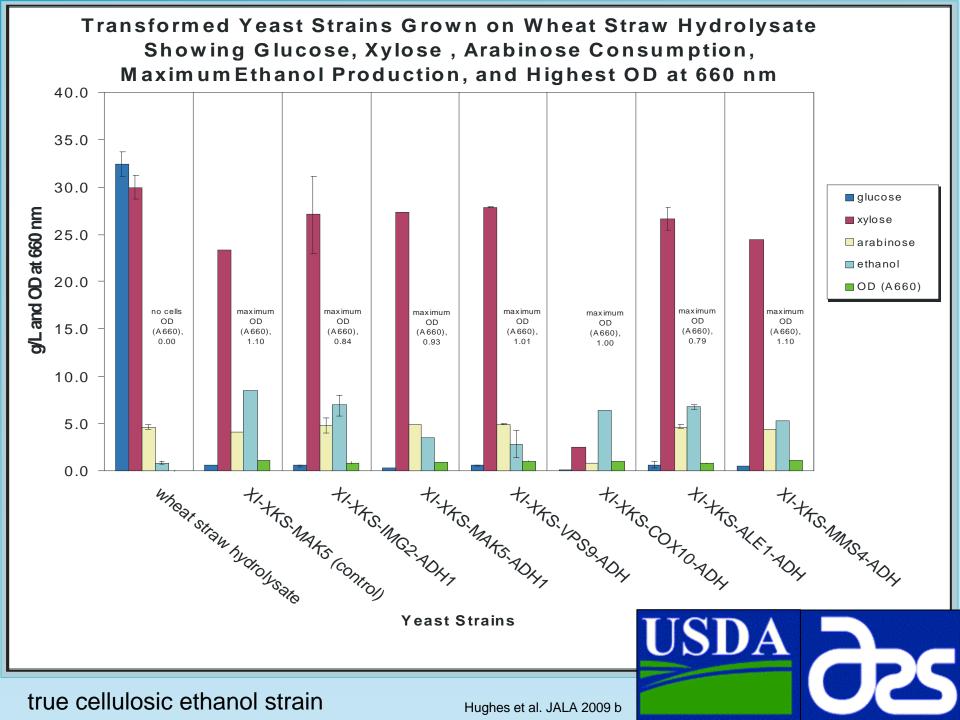
The GMAX yeast

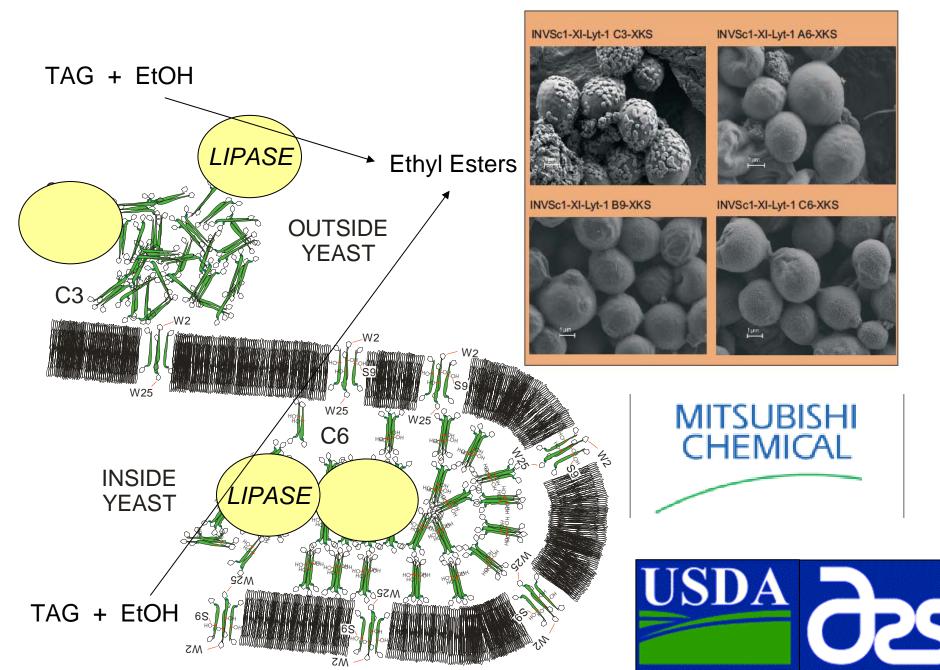

Glucose Mannose Arabinose Xylose Utilization

Low xylitol production

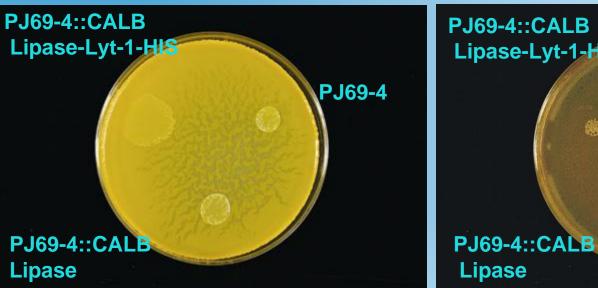

Fastest anaerobic growth

Ethanol Production




GMAX-L Yeast Crossover Refinery

S. Hutchinson, K. Tasaki, J. Thomas, S. Hughes, W. Gibbons, S. Kohl, South Dakota Biofuels Consortium Section of CBRD

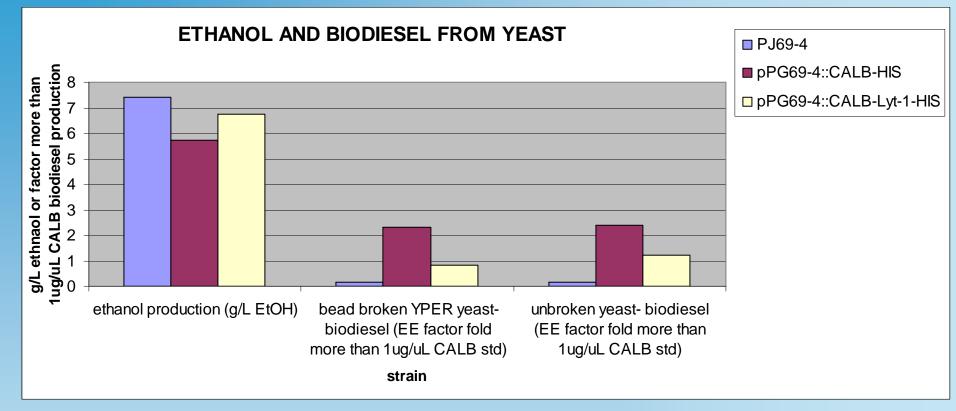

LIPASE-LYT-1 Yeast Model and SEM of Lyt-1 Yeast



External CALB Lipase-Lyt-1-HIS Yeast Crawls On Dry Grind Corn Oil and Internal CALB Lipase Yeast Does Not

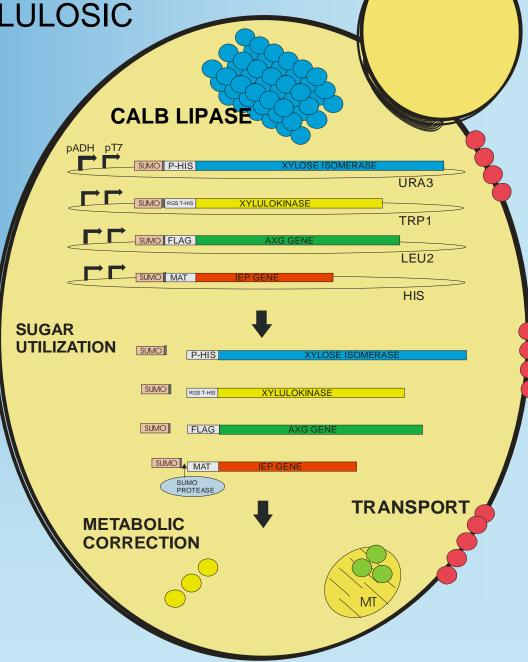
CM galactose plate all amino acids

CM glucose plate -URA



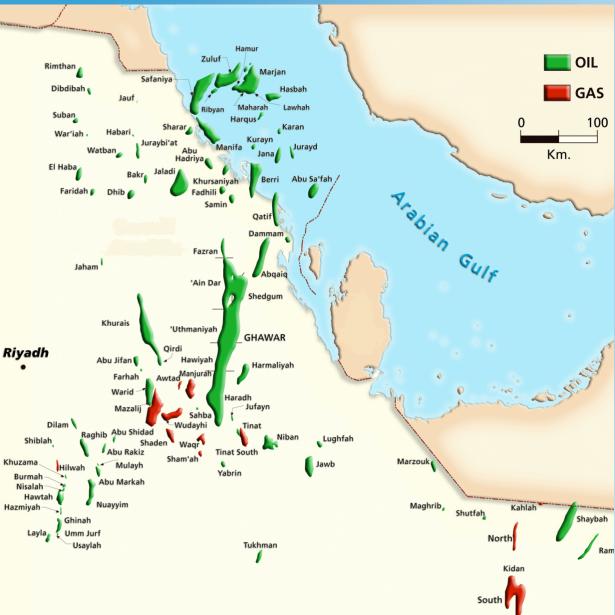
INCUBATION 30°C 5 DAYS

Coproduction of Ethanol and Biodiesel From Corn Oil and Ethanol Using Saccharomyces cerevisiae Biocatalyst



MITSUBISHI ETHANOL AND BIODIESEL REFINERY USING COLUMN PROCESS

GMAX-L: ALLOWS STABLE EXPRESSION OF CALB LIPASE IN CELLULOSIC YEAST BACKGROUND AFTER ETHANOL PRODUCTION HAS COMPLETED


> HIGH LEVEL EXPRESSION INSIDE CALB LIPASE

PLANT COSTS COULD BE LOW

Ethanol Refinery Cost Comparison	Wet Mill	Dry Mill / Grind	Sugarcane	Lignocellulose	Crossover Refinery
AVG. COST OF PLANT	\$233.84 million	\$115.5 million	\$62.5 million	>\$375.00 million	>\$200.00 million
LIFESPAN OF PLANT	>60 years	30-60 years	40-60 years	continuous	continuous
PRICE FEEDSTOCK	\$188.46 mt	\$188.46 mt	\$42.00 mt	\$95.00 mt	\$<50.00 mt
PRODUCTION COSTS	\$0.88/gallon	\$0.71/gallon	\$0.54/gallon	experimental	experimental
COST ENZYMES	\$0.06/gallon	\$0.06/gallon	<\$0.01/gallon	\$0.30/gallon	potentially \$0
TOTAL ETHANOL PROFIT	\$2.56 billion	\$16.77 billion	\$46.65 billion	\$0.051 billion	>\$70 billion
TOTAL COPRODUCT PROFIT	\$5.05 billion	\$9.80 billion	\$6.64 billion	experimental	> \$100 billion
			J	JSDA	2

264 billion barrels

US security

US dependant

Short term amounts (2052)

Replace petroleum products:

oil diesel tar plastics olefins alkanes C3-C8 alkenes

DEPENDENCY=SECURITY/SUSTAINABILITY THE BIOFUEL BENEFITS

Henry Ford designed the famed Model T Ford to run on alcohol – he said it was "the fuel of the future".

Powered by a 2.9-litre, four-cylinder engine with a two-speed transmission, the Model T was simple and reliable, but surprisingly fast for its day. Top speed was around 45mph, with fuel economy of around 40mpg depending on how the car was driven. It was originally designed to run on bio ethanol, but the decreasing cost of oil (and US prohibition) meant that most were run on oil-derived petrol. The standard 4-seat open tourer of 1909 cost US\$850

Conclusion

-World Ethanol Production Will Climb Dramatically. With World Production Reaching 25 Billion Gallons By 2015

-US Energy Independence and Security Act Will Require Large Amounts of Biofuels To be Produced From Cellulosic, Starch, and Sucrose Feedstocks

-Ethanol alone is not profitable and valuable coproducts will make biorefineries sustainable

-Better strains needed quickly. Advanced Biorefineries Could Produce Fuels, Plastic, Chemicals, and Animal Feed Simultaneously Using Engineered Saccahromyces cerevisiae

Acknowledgements

USDA, ARS, NCAUR, Peoria Fermentation Biotechnology Group Michael Cotta Xin-Liang Li Jeff Mertens Doug Jordan Ronald Hector Bruce Dien

USDA, ARS, NCAUR, Peoria Molecular Genetics and Bioprocessing Clete Kurtzman Jody Robinson Jennifer Steele

Mitsubishi Chemical Corp.Inc. LifeSensors, Inc. Hudson Control Group, Inc. VeraSun Bioenergy, Inc. ICM, Inc. Harvard Institute of Proteomics Washington University Arryx, Inc

USDA, ARS, NCAUR, Peoria Crop Bioprotection Group Patricia Slininger Patrick Dowd Eric Johnson

USDA, ARS, NCAUR, Peoria *Food and Industrial Oils* Ken Doll Bryan Moser

USDA, ARS, NCAUR, Peoria **Bioproducts and Biocatalysts Joseph Rich Timothy Leathers** Ken Bischoff Siging Liu John Jackson John Lagazo Watson Chau Amanda Harmsen Paige Pearson Elby Joe Cox

Thank you

