Short-Rotation Woody Crops In the Southeastern U.S.

Timothy G. Rials, Director & Professor Center for Renewable Carbon The University of Tennessee

SHORT-ROTATION WOODY CROPS

- A hybrid approach introducing agricultural practices to tree production
 - State-of-the-art genetics
 - High planting density
 - Competition control
 - Maximum growth/yield
- Applicable to a number of species in the SE
 - Sweetgum
 - Sycamore
 - Cottonwood/Hybrid Poplar
 - Eucalyptus
 - Southern pine
- Potential As a "Flexible" crop

THE IBSS SRWC TRIAL NETWORK

Biomass Systems

Breaking Barriers

Demonstrate real world solutions to barriers limiting deployment of advanced biofuels in the Southeast.

3

Advanced Metrics

Create, validate, and use new metrics for improved decision-making for regional biorefinery development.

Education & Outreach

Provide credible and relevant programs to dispense new knowledge for the workforce and stakeholders.

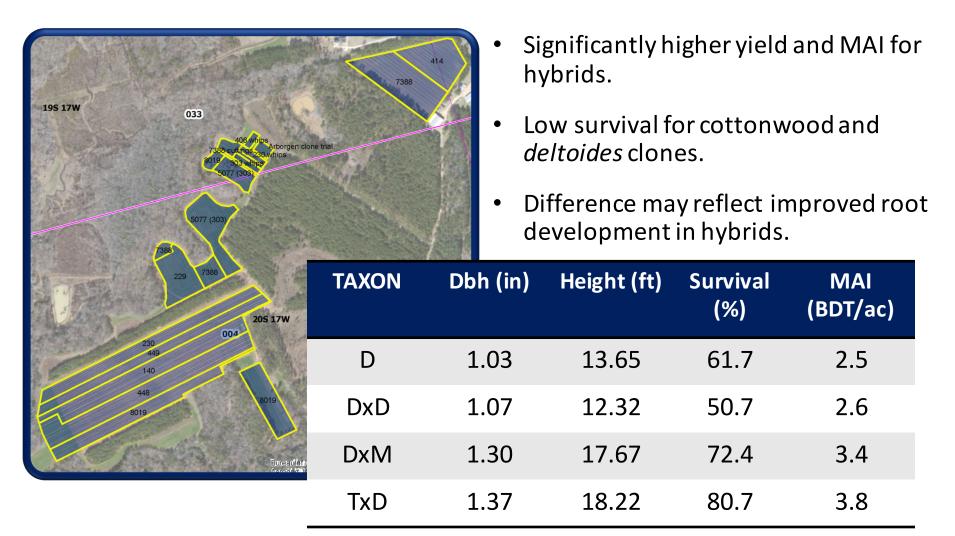
ABLC Feedstocks 2016 June 7-8, Miami, FL

Excluded Land (Federal, high

population, etc.) Forest sites

Forest/Ag flex Ag/Forest flex Agricultural land

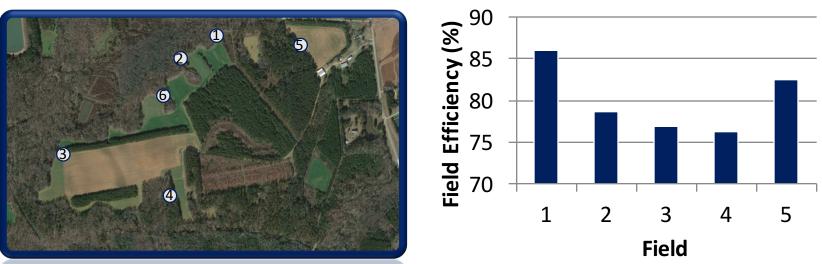
HYBRID POPLAR MANAGEMENT CHALLENGES



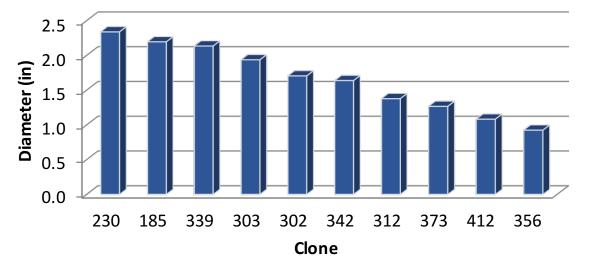
- Survival impacted by deer browse (not shown).
- Cottonwood leaf beetle found in MS requiring aerial insecticide application (left).
- *Septoria musiva* found at all sites (top).
 - Impact has been low (leaf spot) at most sites.
 - Severe canker leading to topping at ETREC.

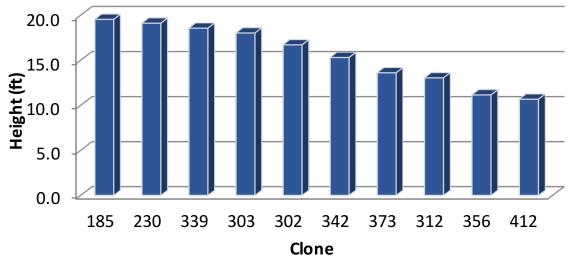
POPLAR PRODUCTIVITY – COLUMBUS, MS SITE

IMPROVED POPLAR HARVEST OPERATIONS


- Case-New Holland Forage Harvester
- 9.7 % idling in-field
 - Mechanical 13.3%
 - Metal sensor and adjustment 16.41%

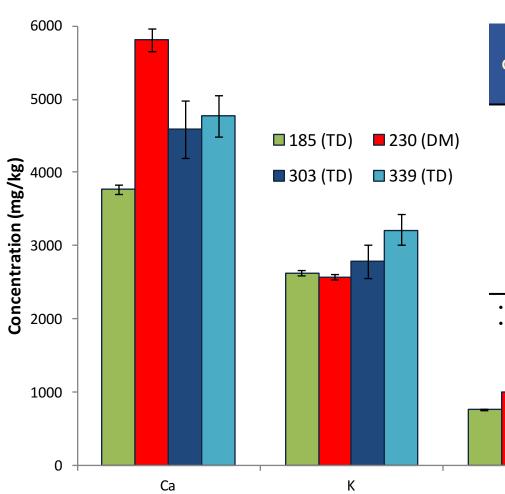
<u>斎</u> 占


Center for Renewable Carbon


UT The University of Tennessee Institute of Agriculture

- Human interruption 43.63%
- Fuel 33.16%

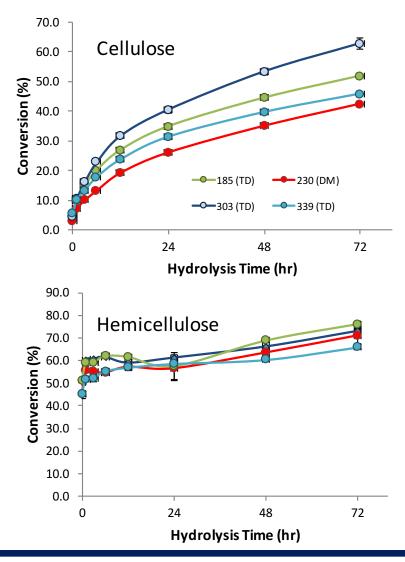
POPLAR PRODUCTIVITY – ETREC SITE



- 4 trials established in TN (2011), AL (2011-2012) and MS (2014).
- Varieties from trichocarpa, maximowiczii and deltoides crossed with deltoides.
- Replicated plots of 622, 1089 and 1452 trees/acre (7x-, 4xand 3x10 ft).
- Wide range of growth for the 10 clones located at the Tennessee site:
 - Diameter from 0.8 to 2.3 inches
 - Height from 10 to 18 feet

POPLAR PROPERTIES – CHEMICAL COMPOSITION

	Chemical composition (% dry basis)				
Clone	Ash (wood)	Extractives	Cellulose	Hemi- cellulose	Total Lignin
185	0.6 ^a	6.7 ^b	40.9 ^c	19.9ª	26.0ª
230	0.7 ^a	7.0 ^b	43.2 ^a	18.4 ^c	25.7 ^a
303	0.6ª	7.0 ^b	41.7 ^b	19.3 ^b	25.3ª
339	0.6ª	8.6ª	39.5 ^d	18.2 ^d	26.8ª


• Estimated mean values are shown based on Least Significant Difference

"a" and "b" indicate statistical differences at p < 0.05.

Mg

Center for Renewable Carbon The University of Tennessee Institute of Agriculture

ENZYMATIC HYDROLYSIS OF SUGARS

- Top 4 biomass producing clones (ETREC) selected for assessment.
- Difference in cellulose conversion of ca. 20% at 72 hrs.
- Highest carbohydrate source has lowest sugar release.
- Conversion of C5 sugars similar for all samples.

CLOSING THOUGHTS

- Short-rotation woody crops offer favorable performance as an energy crop in the Southeast's portfolio.
- Genetic diversity promises continued gains in productivity and desirable physical traits.
- Need to more completely understand properties impacting process performance (wood structure/morphology).

- The prospect of supplying feedstock for diverse markets is particularly appealing.
- Improved resistance to disease (e.g., *Septoria*) is needed to expand poplar production in the region.

The IBSS Partnership is supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30410 from the USDA National Institute of Food and Agriculture.

CONTRIBUTORS

The Univ. of Tennessee

- Nicole Labbé
- Jessica McCord
- Magen Sheddan

Auburn University

- Christian Brodbeck
- James Smith
- Steve Taylor

Genera Energy

- Sam Jackson
- Lance Stewart
- Mike Odom

GreenWood Resources

- Jesus Espinoza
- Rich Shuren
- Brian Stanton
- Rick Stonex

ArborGen

- Bijay Tamang
- Mike Cunningham
- Jeff Wright

