Carbon Dioxide Utilization

CO2 is a friend and a foe, and the greatest greenhouse gas by volume. Downstream products of CO2 and applications make the commodity less of a foe. These uses include making chemicals and useful materials, such as plastics, fuels, building materials, carbonic acid, supercritical extraction uses, sodium bicarbonate (baking soda); replacement molecules for enhanced coal bed methane, enhanced oil recovery (EOR) ventures; and much more.

Useful applications for CO2 represent a partial solution toward reduction of greenhouse gases.

- Some estimates indicate a CO2 atmospheric presence of 0.036% (v), where many hoped we would stay clear of 0.04%, which poses an even greater danger of irreversible climate changes, per some accounts.
- CO2 from biofuels, such as fermentation can make these biofuels projects even greener, when using CO2 in a number of recycling and environmentally friendly applications.
- Beyond fermentation, even greater sums of CO2 are emitted by coal based power plants, some 40% of all CO2 emissions; then CO2 emissions from engine exhaust may be second in volume, and many combustion processes make for ever greater CO2 reduction challenges.

Applying & converting CO2 into useful products; one being plastics is of great interest.

- CO2 as a feedstock for plastics is important for carbon reduction schemes; as well as applications for the production of fuels, chemicals, and building materials.
- In the case of polymers, over 40% of the product weight can be replaced with CO2; and the applications can range from solid plastics to soft foam – like products.
- The range in plastics density and form is a function of the size of the polymer chain.
- Conventional polyethylene and polyproplene are heavily dependent upon fossil fuels. Some CO2 applications in plastics can replace this petroleum – based content by 50%. Such processes include Novomer.

Other CO2 applications and useful products which represent better methods, and a net greenhouse gas reduction.

- CO2 (when dissolved in water) represents carbonic acid (H2CO3), which safely replaces mineral acids such as sulfuric; and leads to a benign by-product as carbonates and bicarbonates v. environmentally harmful sulfate compounds.
- CO2 usage for enhanced photosynthesis in commercial greenhouse settings and the production of algae for biofuels and other commercial uses, is an excellent CO2 sink.
- Supercritical extraction of essential oils, spices, etc., replace hydrocarbon materials such as hexane results in a non-toxic alternative, with no hydrocarbon disposal requirements.

More useful applications and products of CO2 usage in industry

- Grain fumigation with CO2 v. use of halogenated hydrocarbon (carbon tetrachloride) and other agents represents a non-carcinogenic approach to fumigation.
- Sequestration of CO2 in pre-cast concrete, enhances concrete curing. One such process can sequester 60 tons of CO2 in 100 tons of pre-cast concrete.
- Common commodity chemicals sequester CO2 in their manufacture, such as urea, methanol, sodium bicarbonate, and calcium carbonate.
- Enhanced recovery of fossil fuels is well proven in EOR (enhanced oil recovery), and CBM (enhanced coal bed methane) projects.

Carbon Dioxide to Algae to Biodiesel Diagram

CO2 uptake in algae projects

- CO2 stream to algae site; also requiring sunlight, nutrients, and water.....
- Yield algae for biodiesel oil extraction; and possible algae residue for return to fermentation via cellulosic approach.