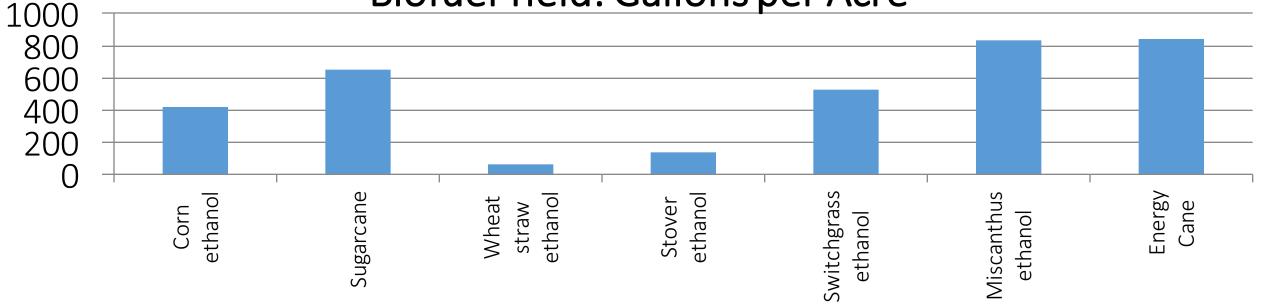
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CHOOSINg the Night Feedstock. Cost, Nisk, and Sustainability Considerations

Madhu Khanna

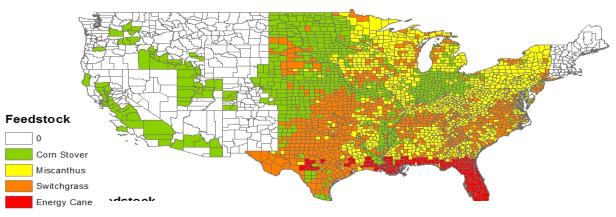
ACES Distinguished Professor of Environmental Economics

University of Illinois, Urbana-Champaign

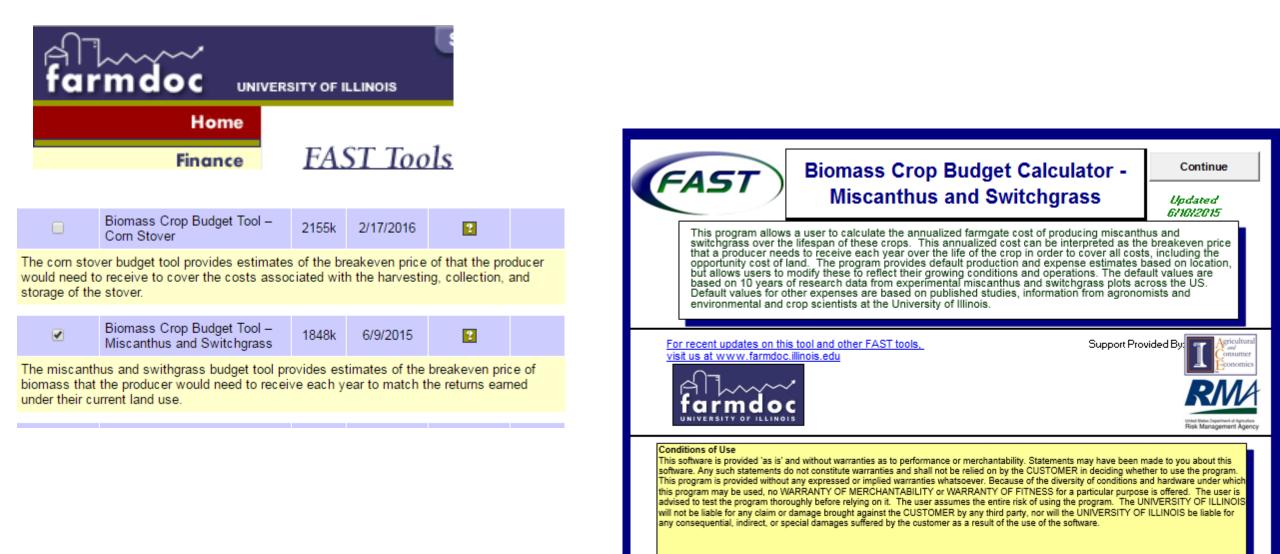


Choice of Feedstocks for Biofuels

Biofuel Yield: Gallons per Acre


Feedstock Costs

- Location matters: yields
- Energy Crops:
 - Life-span of 10-15 years or more: Long term commitment
 - Lags in establishment
 - Upfront establishment costs:
 - Cost of alternative uses of land: foregone returns to land
- Crop Residues
 - Readily available
 - Sustainable harvest to residue ratios
 - Replacement nutrients
 - Low yields, larger collection area


Miscanthus Yield Yield (MT/Ha)

Least Cost Feedstock Choice

Calculating the Cost of Feedstock Production

http://www.farmdoc.illinois.edu/pubs/FASTtool.asp?category=risk

Calculator Overview

- Excel-based, similar to *FAST* tools available through the *farmdoc* extension project website
 - Users will be able to download and use on their own computers or devices that can run Excel
- Inputs
 - Required: State and county, energy crop choice, current crop rotation or land use
 - Various optional inputs to tailor to current prices and individual farm's productivity and cost structure
- Outputs
 - Current crop budget
 - Energy crop budget and breakeven biomass price
 - BCAP program incentives and adjusted breakeven biomass price

Biomass Crop Budget Calculator - Miscanthus and Switchgrass

Select Your Location, Energy Crop, and Current Land Use

State	Illinois	
County	Champaign	
Biomass Crop	Miscanthus	
Current Use of Land	Corn after Soybean, Conventional -Till 🔽	,

Continue to: Agronomic Assumptions

.

Annual Discount, Interest, and Inflation Rates

be willing to accept for investing a dollar today.

³Assumed annual inflation rate over time.

²Interest rate on loans used to finance annual operating costs.

Discount Rate ¹	2.0%
Interest on Operating Loans ²	7.0%
Inflation Rate ³	0.0%

¹Discount rate should reflect the time value of money for the user, or the rate of return they would

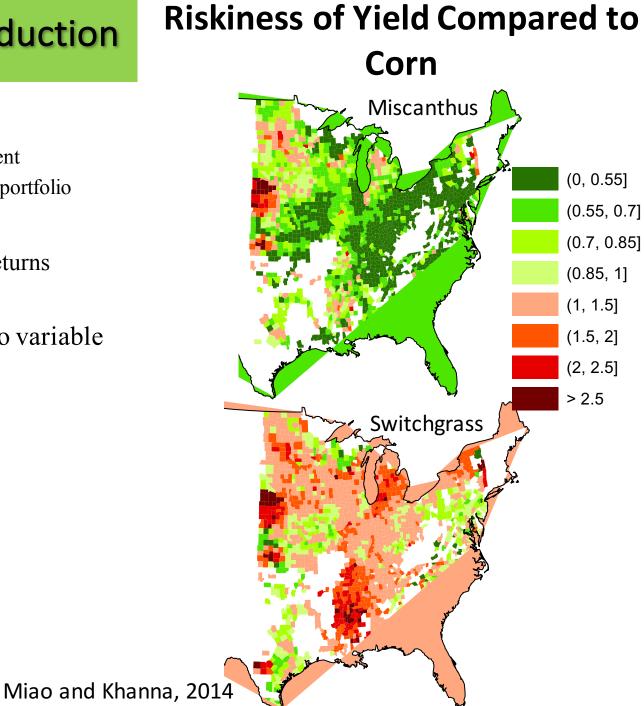
	Year1	Year2	Year 3+	Assualized
Miscanthus				
Harvested Yield ¹ at 15% moisture (tons/acre)	0.0	7.5	15.1	13.4
Harvested Yield at 0% moisture (tons/acre)	0.0	6.4	12.8	11.5
Delivered Yield ² at 15% moisture (tons/acre)	0.0	5.5	11.0	9.8
Input Expenses (\$/acre)				
Nitrogen (N)	\$9.09	\$9.09	\$9.09	\$9.03
Phosphorous (P)	\$5.29	\$5.29	\$5.29	\$5.23
Potassium (K)	\$16.37	\$16.37	\$16.37	\$16.31
Lime	\$0.00	\$0.00	\$0.00	\$0.00
Herbicides/Pesticides	\$19.12	\$13.12	\$0.00	\$2.83
Seed	\$1,049.98	\$157.50	\$0.00	\$91.83
Preharvest Expenses (\$/acre)				
Disking	\$0.00	\$0.00	\$0.00	\$0.00
Plowing	\$14.07	\$2.11	\$0.00	\$1.23
Harrowing	\$5.91	\$0.83	\$0.00	\$0.52
Airflow Spreader	\$3.36	\$3.36	\$3.36	\$3.36
Planting	\$35.31	\$5.30	\$0.00	\$3.03
Chemical Application	\$5.41	\$0.81	\$0.00	\$0.4
Harvest Expenses (\$/acre)				
Mowing/Conditioning	\$0.00	\$12.67	\$14.91	\$13.6
Raking	\$0.00	\$4.02	\$4.73	\$4.3
Baling	\$0.00	\$40.70	\$75.44	\$67.03
Staging, and loading	\$0.00	\$33.87	\$79.70	\$70.13
Storage	\$0.00	\$17.97	\$42.28	\$37.24
Interest on operating inputs	\$76.99	\$14.52	\$2.15	\$8.73
Total Operating Expenses (\$/acre)	\$1,240.90	\$343.58	\$253.32	\$335.42
Land Rent Opportunity Cost Estimat	\$404.75	\$411.62	\$418.48	\$416.92
Total Operating Expense and Land C	\$1,645.65	\$755.19	\$671.80	\$752.3
Breakeven Biomass Price (\$/ton				\$75.64

¹Harnenled gield in refere In gield before barnent and alarage lannen

¹Delivered gield referal by gield after harvest and alwrage lawer have been assumed for

¹Land Real Opportunity Coal Entimate annuals for calimated externs from the accerding of land extended

Back to: Crop and Input Pr Land Rontal Rat


Back to: Com and Sovbean Budgets

Back to:

Location Selection

Other Factors Affecting Feedstock Production

- Riskiness of producing energy crops
 - Yield risks vary spatially
 - Possibility of crop failure with significant loss of investment
 - · Offsetting benefits from diversification of crop/feedstock portfolio
- Upfront investment costs
 - Time preferences of producers: present value of future returns
 - Liquidity/credit constraints
- Opportunity cost of converting land to energy crops also variable
 - Depend on farm policies to support annual crops
 - Subsidized crop yield/revenue insurance
- Price of biomass: depends on policy and oil prices
- Risk of refinery shutdown
- Thin markets for biomass with limited processors
 - None/few alternative uses other than bioenergy
 - Low density, bulky/costly to transport long distances
- Spot market sales of biomass risky
 - Farmers and refineries bears price and demand risks

Risk Sharing Through Contract Design

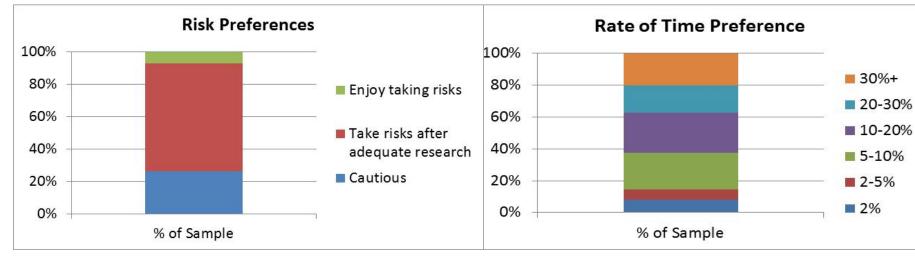
- Need for long term production/marketing contracts between farmers and processors
- Land leasing contract (Vertically Integrated Production):
 - Refinery bears yield risk, biomass and biofuel price risk; farmer bears risk of land cost
- Fixed price per ton of biomass contract:
 - Farmer bears yield risk and cost of land risk while refinery bears the biofuel price risk
- Profit sharing contract: percent of revenue paid to farmers:
 - Farmer bears yield risk and cost of land risk; shares the biomass price and biofuel price risk with refinery

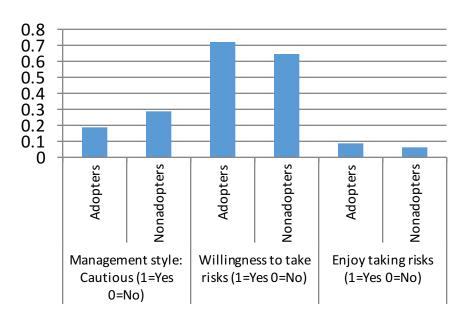
Cost-Sharing Contract Attributes

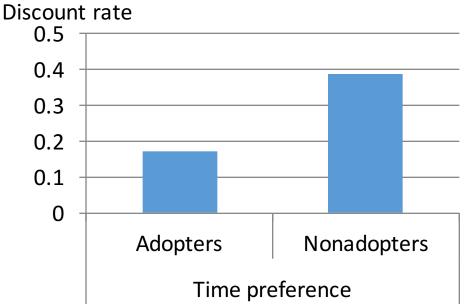
- Sharing of establishment costs
- Need for farmers to acquire crop-specific equipment for field operations (learning/transactions costs)
- Duration of the contract
- Terms of the contract: What are farmers willing to trade-off
 - between risks vs returns,
 - current costs vs future returns?

Farmer Survey: Willingness to grow energy crops

- Random sample of farmers from five states: IL, IN, KY, MO, TN
- Choice Experiment: Preference for crop-contract features


• Risk Preferences:

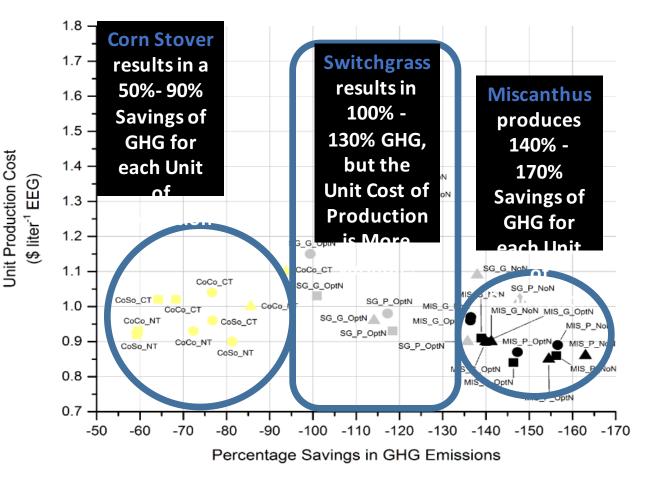

- How would your neighbors describe your management style?
 - Cautious; Willing to take risks after adequate research; Enjoy taking risks in my business
- Time Preferences
 - Accept a cash amount of \$1000 today or \$X in 5 years with certainty


Contract Attributes and Levels in the Choice Experiment

Attributes	Levels
Length of the contract	5 years, 10 years
Establishment cost shared by	0, 25%, 50%, 75%
refinery	
Crop specific equipment	Required, not required
Net gain in annual income per acre	5%, 10%, 15%, 20%
Variability in annual incomes	25%, 50%

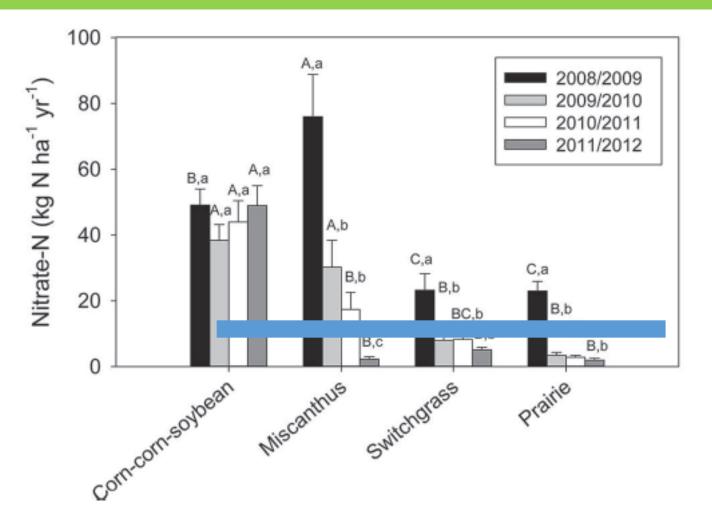
Farmer Characteristics and Preferences

Farmer Willingness to Make Trade-Offs in Contract Features


- Adoption less likely by farmers with
 - High discount rates
 - High returns to existing use of land
 - Revenue crop insurance for row crops
- Contracts preferred that provide
 - Higher net income and less variable income
 - Lower establishment cost share
 - No crop-specific investment in equipment
- Farmers willing to pay
 - 2-3% of net gain in income for a 1% higher share of establishment cost being borne by the biorefinery
 - 8-10% of returns to avoid acquiring crop-specific equipment

Khanna et al (2016)

Environmental Sustainability of the Biofuels


High yielding, low input energy crops

- Can be grown on less productive land
 - Low direct and indirect land use effect
- Low to negative greenhouse gas intensity
- High soil carbon sequestration
- Prevent nutrient run-off
- Impact of corn stover depends on
 - Rate of residue collection
 - Tillage practices
- Relatively higher greenhouse gas intensity than energy crops

(Dwivedi et al., 2015 Huduburg et al., 2016)

Ecosystem Service Provisioning Water Quality Impacts

Nitrates

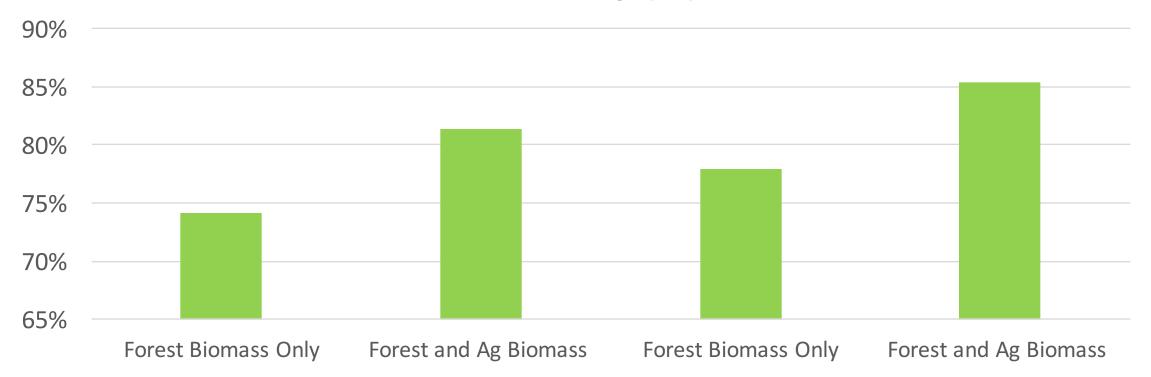

- Energy grass nitrate loads = only 10% of total corn nitrate loads after 4 years of establishment
- Corn stover can reduce nitrate loading but increase erosion and sediment run off.
- Limits on stover removal rate are critical for ES provisioning.

Fig. 1. Annual nitrate N leaching (April to April) at 50 cm soil depth

Smith et al., 2010

GHG Intensity of Pellets for Electricity Generation

Savings in GHG Emissions Relative to Grid Electricity (%)

Wang et al., 2015

In Sum: Trade-offs in Feedstock Choice

- Optimal feedstock choice will vary by location and yield is critical to profitability
- Compared to conventional crops/residues, energy crops offer
 - Environmental sustainability, lower yield risk but high upfront costs and need for long term investments
 - Potentially high profitability risk due to high fixed costs
- Motivating risk-averse, present-biased farmers, with credit constraints to grow energy crops will require
 - Contracts under which refineries bear much of the risk and establishment costs
 - Policies such as the Biomass Crop Assistance Program
 - Assured long term mandate for advanced biofuels through the RFS

Questions?

Publications

Miao, R. and M. Khanna, "Are Bioenergy Crops Riskier than Corn? Implications for Biomass Price," *Choices*, 29(1), 6 pages, 2014.

Wang, W., P. Dwivedi, R. Abt, and M. Khanna, "Carbon Savings with Transatlantic Trade in Pellets: Accounting for Market-Driven Effects" *Environmental Research Letters*, 10 (11), 2015.

Hudiburg, T.W., W.Wang, M. Khanna, S. P. Long, P. Dwivedi, W.J.Parton, M. Hartmann, and E.H. DeLucia, "Impacts of a 32 Billion Gallon Bioenergy Landscape on Land and Fossil Fuel use in the US," *Nature Energy*, 1:15005, 2016.

Khanna, M., J. J. Louviere, and X. Yang, "Motivations to Grow Energy Crops: The Role of Crop and Contract Attributes," *Agricultural Economics*, 2016

Email: khanna1@illinois.edu

http://ace.illinois.edu/directory/madhu-khanna

