

National Institute of Food and Agriculture

The Agriculture and Food Research Initiative Regional Bioenergy Feedstock Systems Coordinated Agricultural Projects (CAPs):

An integrated approach to understanding regional feedstock supply, quality and cost

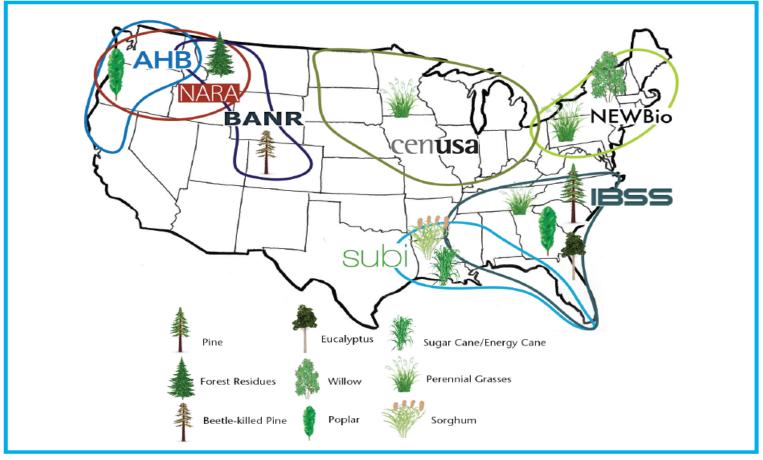
Presented to the ABLC Feedstocks Conference Miami, FL June 8, 2016

Sustainable Bioenergy and Biobased Product Portfolio Vision

Facilitate the development of sustainable regional production systems for biofuels, biopower, industrial chemicals, and biobased products through partnerships and collaboration, to create and preserve jobs, increase rural economic vitality, enhance food production systems, create ecosystems services, and reduce use of fossil carbon.

AFRI - Coordinated Agricultural Projects

Regional Biomass Feedstock Systems


- Focus on five non-food feedstocks (2010-2013):
 - ✓ Woody biomass;
 - ✓ Energy cane;
 - ✓ Perennial grasses;
 - ✓ Energy sorghum; and
 - ✓ Oilseed crops

Transdisciplinary systems approach to reduce risk

- Focus on feedstock development, production, and delivery
- Must partner with feedstock users & well-align with appropriate conversion technologies and industry for bioproduct production
- Integrate research and development, education, outreach, demonstration
- Analyze economic, environmental, and social sustainability
- Involve communities upfront for their guidance

AFRI Biofuel Feedstocks and Project Locations

Where are the Feedstocks? They are here. Where's the value proposition? Understanding feedstock supply quantity, logistics, quality characteristics, and cost to stand up an integrated value chain

Northwest Advanced Renewables Alliance

A new vista for Green Fuels, Chemicals, & Environmentally Preferred Products

Michael Wolcott

Regents Professor Project Co-Director

Ralph Cavalieri

Associate Vice-President for Alternative Energy Project Director

Washington State University

Northwest Advanced Renewables Alliance

NARA Team

Alaska Airlines ANDRITZ Biomass ad Infinitum LLC Catchlight Energy CLH Cosmo Specialty Fibers Inc. Facing the Future Forest Business Network LLC Gevan Marrs LLC Gevo, Inc. ICM Montana State University National Center for Genome Research National Renewable Energy Laboratory Oregon State University Penn State University Salish Kootenai College South Hampton Resources Inc. Steadfast Management Inc. Thomas Spink Inc. University of Idaho University of Minnesota University of Montana University of Utah University of Washington

University of Wisconsin-Extension USDA Forest Products Laboratory USDA Forest Service Washington State University Western Washington University Greenwood Resources Weyerhaeuser

NARA: Feedstock to Fuels

Completing 5 of 5 years

Northwest Advanced Renewables Alliance

Keys to NARA

- Innovation and Integration
 - Robust project management
 - Feedstock Logistics
 - Pre-processing (mild bisulfite, milled wood)
 - Sustainability Analysis (TEA)
 - Novel conversion technologies
 - Isobutanol to AJF, lignosulfonates, activated carbon
 - Workforce development
 - Community and landowner engagement

Why it matters...

- Rural economic development
 - New jobs in rural communities
 - Protected jobs in the pulp industry through diversification
 - Alternative income for landowners
- Products from non-petroleum renewable feedstocks
- Ecosystem services

Biorefinery Approach

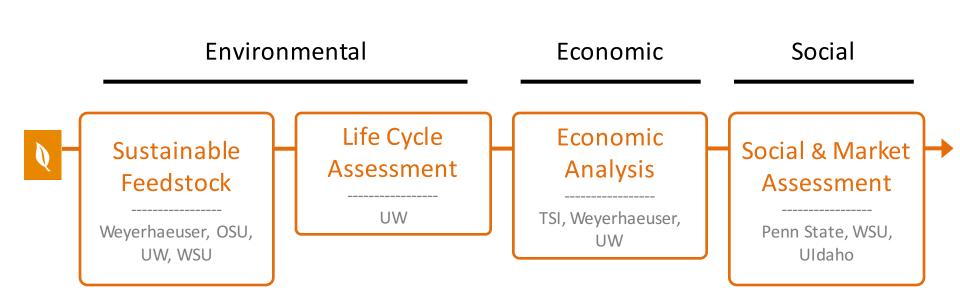
NW Biofuels + Co-Products May 3, 2016 in SeaTac, WA

4 14

Isobutanol to Jet Fuel Demonstration

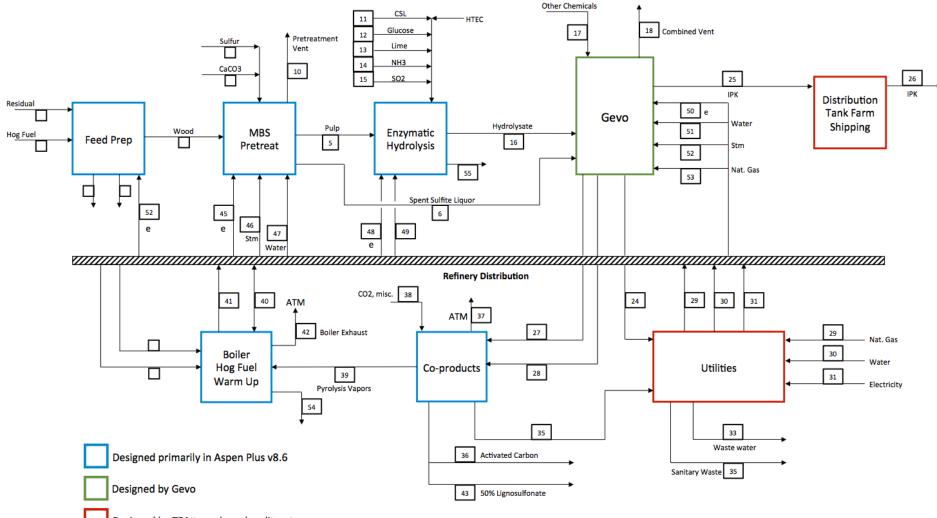
NW Biofuels + Co-Products May 3, 2016 in SeaTac, WA

Demonstration unit at South Hampton Resources, Silsbee, TX is fully functional



© 2012 Gevo, Inc.

Northwest Advanced Renewables Alliance


Making Alternative Jet Fuel is Complicated

TAKE HOME LESSONS FROM NARA

NARA ASPEN Process Model

Source: TSI Chemicals & Biomass Products and Processes

Northwest Advanced Renewables Alliance

Making Alternative Jet Fuel is Complicated

And Its Even More Complicated to Make Money!

TAKE HOME LESSONS FROM NARA

IRR for Integrated Biorefinery - \$3.09/gal AJF

Baseline IRR for Greenfield IBR 0.1% < < target of 15-25%

Decrease OpEx = 0 15.9% - barely in target of 15-25%

Decrease CapEx = \$104 MM

25% - below liquidation cost of existing plant

<u>Increase Revenue = 100 to 160%</u> 17.8 to 25%

Most Plausible Scenarios

Control Costs

Build Revenue Streams

- require high value products
- biochemical is potential

Preliminary	y Results – Do	Not Distribute	or Cite
-------------	----------------	----------------	---------

Sensitivi	ity Analy	sis for IRR from	NARA IBR	
Decreas	e Opex b			
Capex		Opex	Revenue	IRR
\$	1,441	\$ 281	\$ 32	0.1%
\$	1,441	\$ 140	\$ 32	9.4%
\$	1,441	\$ 70	\$ 32	7 12.8%
\$	1,441	\$-	\$ 32	15.9%
Decreas	se Capex			
\$	1,441	\$ 281	\$ 32	0.1%
\$	1,081	\$ 281	\$ 32	7 1.4%
\$	721	\$ 281	\$ 32	3.6%
\$	104	\$ 281	\$ 32	25.0%
Increase	e Revenu	ie by 50%, 100%,	or 160%	
\$	1,441	\$ 281	\$ 32	7 0.1%
\$	1,441	\$ 281	\$ 493	1 10.6%
\$	1,441	\$ 281	\$ 654	17.8%
\$	1,441	\$ 281	\$ 850	25.0%

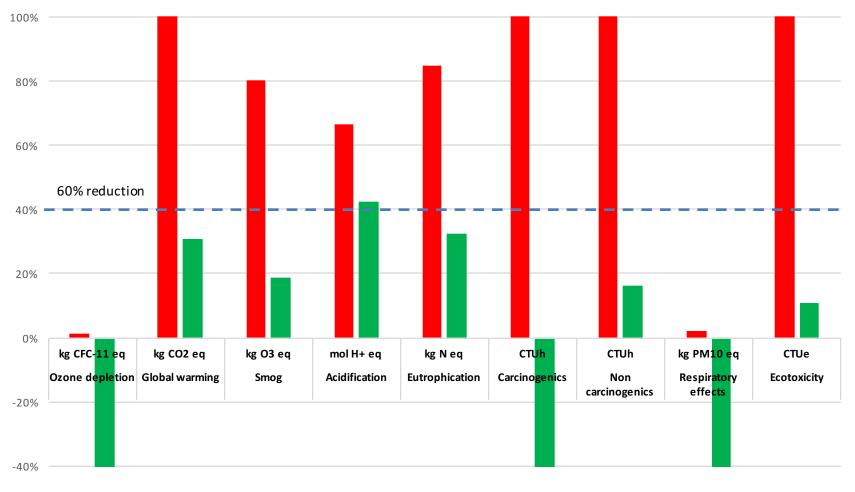
Combinatio								
Decrease Capex & Opex by 25% + Increase Revenue 50%								
Capex		Opex		Revenue		IRR		
\$	721	\$	211	\$	491	17.7%		
Decrease Capex & Opex 25% + Increase Revenue 100%								
\$	721	\$	211	\$	654	25.7%		

Northwest Advanced Renewables Alliance

Making Alternative Jet Fuel is Complicated And Its Even More Complicated to Make Money!

But its Good for the Environment

TAKE HOME LESSONS FROM NARA



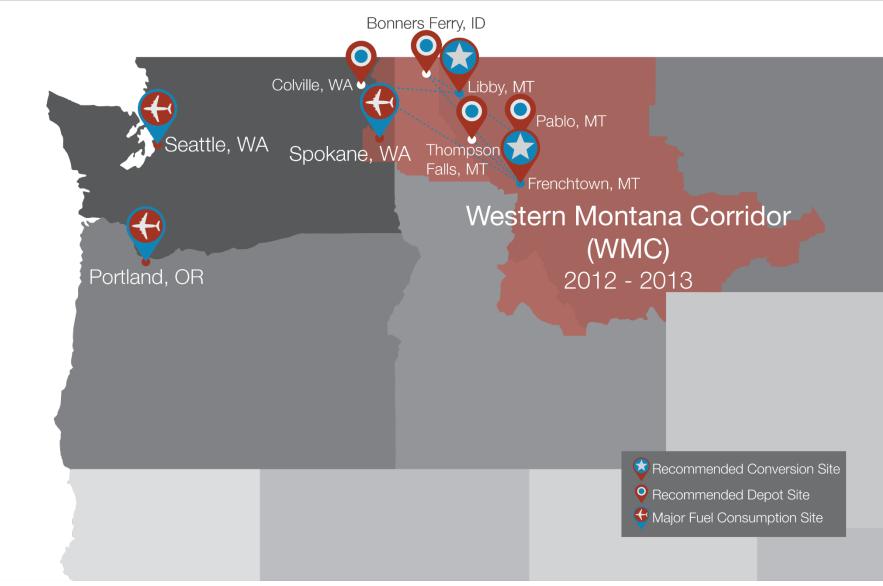
Comparative LCA for NARA Alternative Jet Fuel

NW Biofuels + Co-Products May 3, 2016 in SeaTac, WA

Kerosene IPK (NARA) with 100% avoided burn

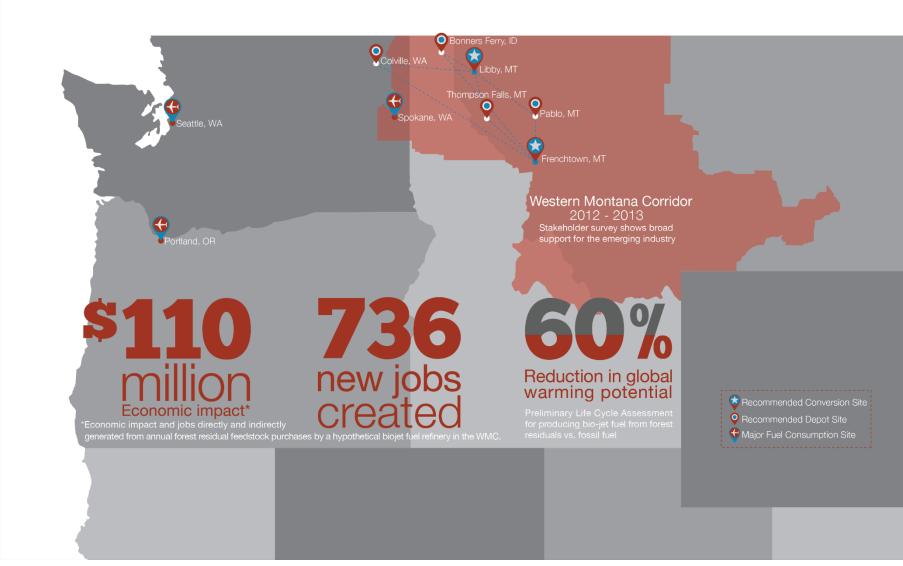
Preliminary Results – Do Not Distribute or Cite

Making Alternative Jet Fuel is Complicated And Its Even More Complicated to Make Money! But its Good for the Environment


And Good For Local Economies

TAKE HOME LESSONS FROM NARA

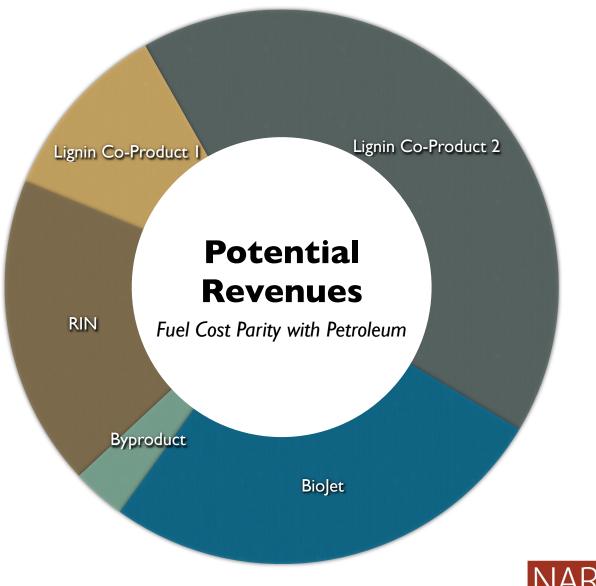
Western Montana Corridor v1.0



Northwest Advanced Renewables Alliance

Economic Impact

Making Alternative Jet Fuel is Complicated And Its Even More Complicated to Make Money! But its Good for the Environment And Good For Local Economies


Continue the Pathway to Commercial Reality

TAKE HOME LESSONS FROM NARA

Value Chain: Route to Cost Parity for Fuels

Current Process Design

- Current Status is FEL-1 to FEL-2
- Needs Optimization of Value Chain
- Refinement of Market and Equipment Costs

Consideration for Comparison to Petroleum

- Petroleum fuel production does not account for green house gas production, only costs
- Petroleum fuel allowed to fully depreciate capital including drilling assets
- Petroleum fuels are lowest in value chain that includes petrochemicals

Making Alternative Jet Fuel is Complicated And Its Even More Complicated to Make Money! But its Good for the Environment And Good For Local Economies Continue on the Pathway to Commercial Reality

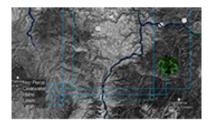
Continue to Focus on Supply Chains

TAKE HOME LESSONS FROM NARA

Regional Supply Chain Analyses

Pacific Northwest (PNW) Supply Chain Analysis

This site provides supply chain data and analysis generated by NARA research for the region identified as the Pacific Northwest, which includes Montana, Idaho, Washington, and Oregon.


Mid-Cascades to Pacific (MC2P) Supply Chain Analysis

This site provides supply chain data and analysis generated by NARA research for the region identified as Mid-Cascades to Pacific, which includes the western sections of Washington and Oregon.

Western Montana Corridor (WMC) Supply Chain Analysis

This site provides supply chain data and analysis generated by NARA research for the region identified as the Western Montana Corridor, which includes the western section of Montana, Northern Idaho and northeast Washington.

Clearwater Basin Supply Chain Analysis

This site provides supply chain data and analysis generated by NARA research for the region identified as the Clearwater Basin, located in central Idaho.

NW Biofuels + Co-Products May 3, 2016 in SeaTac, WA

Conf. Salish and Kootenai Kevin Jump

Weyerhaeuser Corp Lane Forest Products

Weyerhaeuser Corp Lane Forest Products

1K-IPK – Fuel Distribution and Demonstration

NW Biofuels + Co-Products May 3, 2016 in SeaTac, WA

 Fuel Certification

 Alter Jet - ASTM D7566

 Blending

 Conv Jet - ASTM D1655

 Distribution to Wing

 Commercial Demonstration

 Flight

Processing Partners Gevo Corp South Hampton Refining Blending Partner Alaska Airlines

Moving from Invention to Commercial Reality

- Forest Residue Collection and Preparation
- Envisioning Integrated Facilities and Siting
- SPORL / MBS Pretreatment
- Alcohol to Jet
- Demonstrating Feasibility with Supply Chain Implementation Partners
- Educating Citizens, Industry, Policy Makers

Advancing Supply Chain Development

THE ROLE OF NARA

StatesNational Instituteimment ofof Fooditureand Agriculture

Path to Commercialization?

 Port of Seattle (Sea-Tac) signed MOU with NARA partners Boeing and Alaska Airlines to bring AJF to Sea-Tac in the next 5-10 years.

- Commissioned infrastructure and engineering study

 Commercialization roadmap preliminary meeting 5/16 at Sea-Tac brought together NARA, potential industrial partners, Port of Seattle.

If its going to burn....

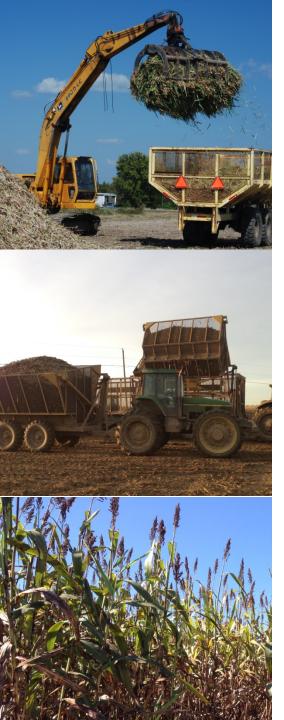
... it might as well be in a jet engine John Bailey, OSU NARA Member

What's next?

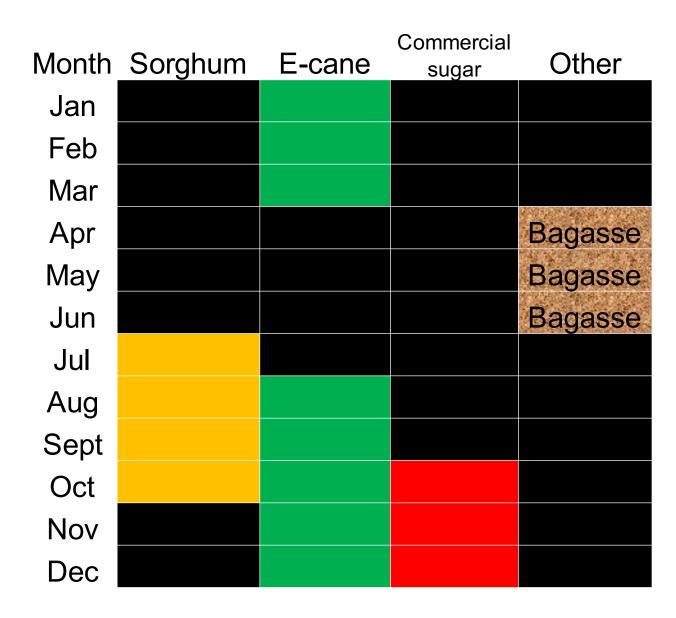
- Agriculture and Food Research Initiative
 - 2016 RFA is out:
 - Four new regional CAPs
 - Each project \$15 M over five years
 - Biofuel, chemical intermediates, biobased products
 - Foundational Research Program
 - Cover Crops for Bioenergy and Biobased Products
- New interagency program with DOE BETO: Feedstock Logistics and Materials Handing Bill Goldner, Ph.D. wgoldner@nifa.usda.gov 39

Sustainable Bioproduct Initiative (SUBI) led by Louisiana State University

- In 5th year of funding (\$17.5 M total)
- Entire supply chain focus
- Integrated Research, Education, and Extension/Outreach
- Successfully developed cold-tolerant energy cane
- Energy cane and sweet sorghum feedstocks for a full range of higher-value co-products to make the entire system economical
- Commercial partners Virent (aviation fuel) and Optinol (butanol)


Keys to SUBI

Innovation and Integration


- Superior energy cane and sweet sorghum genetics
- Cold tolerant energy cane to move cane production away from the coast
- Low input production systems
- Feedstock logistics
- TEA and Sustainability Analysis
- Diverse conversion options
 - Chemicals, bioplastics
 - Fuels (butanol, aviation fuel)
- Workforce development
- Community and landowner engagement

Why it matters...

- Rural economic development
 - Jobs in an area that sorely needs them
 - Potential for greater farm income than current cropping systems
- Products from non-petroleum renewable feedstocks and accompanying ecosystem services.

Year round feedstock supply

Winnsboro Ho 02-113 1st stubble crop (Sept. 2014).

White PVC pole is 10' long.

Courtesy of Chris Adams.

Sweet Sorghum

Annual crop

- Contains, a sugar containing juice, starch containing seed heads and fiber
- 90-120 day crop cycle, can be grown across target region
- Gross structure similar to sugarcane
- Can be widely grown across Southern US
 - About 6,000 acres required to sustain processing plant for 3 months

Crop Comparison

Energycane	
Harvest time(months)	7
Ag Inputs	none
Planting	perennia I
Acres/1000t/day factory	8,000
Growth in non- traditional regions	yes
Dry ton/acre	10-18

Sweet sorghum	
Harvest time(months)	3
Ag Inputs	None*
Planting	annual
Acres/1000t/day factory	6,000
Growth in non- traditional regions	yes
Dry ton/acre	1-9

*fallow with clover

Biofuel Feedstock Production Costs - Louisiana

Feedstock Production Cost	Energy Cane	Sweet Sorghum
	(\$/dry ton)	(\$/dry ton)
Total Production Costs	\$70 - \$74	\$74 - \$90
Land Rent ¹	\$14 - \$15	\$15 - \$18
Transportation ²	\$12 - \$24	\$13 - \$27

¹ Rent charged at 1/6 crop share.

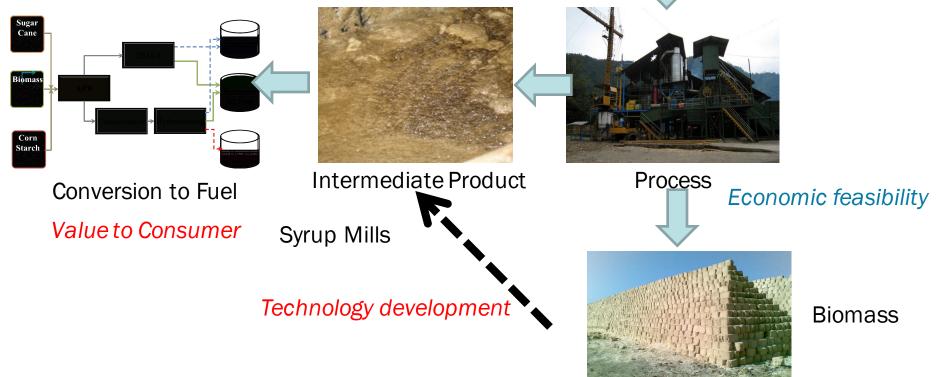
² Hauling cost example range = \$3 to \$6 per wet ton.

³ Costs per dry ton estimated using average dry matter content of 24.3% for energy cane and 22.4% for sweet sorghum

United States National Institute Department of GFood Agriculture and Agriculture

SUBI Pilot Plant at Audubon Sugar Research Center

Process Outline



Sustainable Production Feedstock development Sustainability

Harvest analyze Deliver
Technology development

