
Commercial Production of Terpene Biofuels in Pine Gary Peter Forest Genomics Lab School of Forest Resources & Conservation

Biofuels: A Carbon Challenge

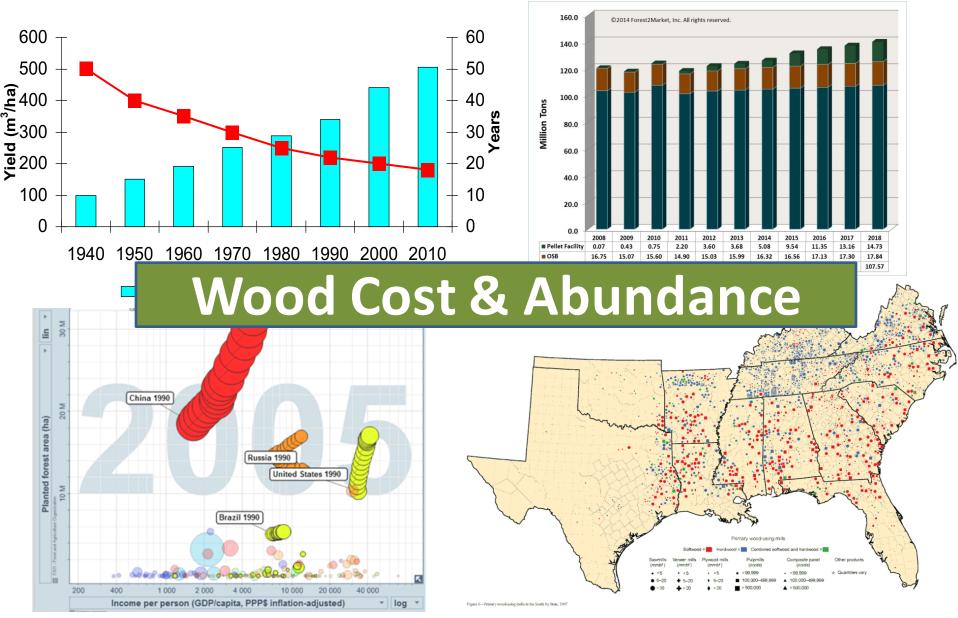
fuel yield

(GJ h⁻¹ y⁻¹)

78

17

207

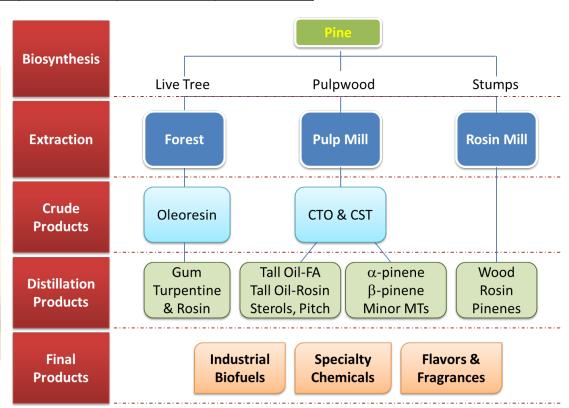

57

Carbon Content of Final Fuel®

Planted Southern Pines: The Renewable Biomaterial, Chemicals & Bioenergy ★STAR★

- Meets all sustainability metrics
 - Supply exceeds demand
 - Economically viable for multiple products
 - Top 1-3 industries in most SE states
 - Positive net energy & negative CO₂
- Largest biomass supply chain in world
- Largest source of long fiber pulp
- Largest source of saw timber
- Expansion of wood pellets
- Biofuels??

Impact of Silviculture & Tree Improvement on Harvest Volume, Rotation Length & Markets


Pine Chemicals: First Industrial Chemicals & Current Industry Supply

~ Regional production

	Oleoresin	СТО	CST
Asia	92%	-	-
S. America	8%	6%	2%
Europe	-	40%	35%
N. America	-	50%	60%

God to Noah: "Pitch the ark within and without with pitch"

Conifer terpenes as feedstock for liquid **biofuel**

- Terpenes have **a high energy density**
- May be **blended with fossil fuels**
- Minimal fertilizer and irrigation requirements
- Large renewable chemicals industry competitive with petroleum based feedstocks

PRETREATMENT

Sunpine tall oil refinery

FROM WOOD RESIDUES TO WOOD FUEL

CRUDE TALL OIL

A residue of chemical pulping Crude Tall Oil is purified: salts, process containing natural extractive components of wood.

HYDROTREATMENT

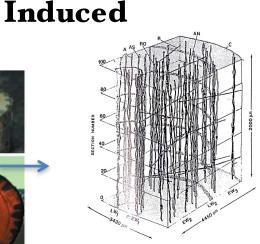
Pretreated Crude Tall Oil is fed together with make-up and recycled hydrogen to the reactor where the chemical structure is modified. Reaction water is separated and directed to waste water treatment. FRACTIONATION

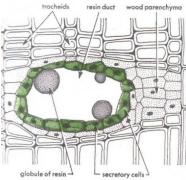
Remaining hydrogen sulfide and uncondensable gases are removed. The remaining liquid is distilled to separate renewable diesel.

RENEWABLE DIESEL

High quality advanced biofuel suitable for all diesel engines.

Stem terpene defenses against bark beetles


(e)



Constitutive

Bark beetle penetrates stem *Physical barrier:* Constitutive oleoresin flow *Chemical defense:* terpenes toxic to bark beetles & pathogenic fungi

Wounding and fungi induce terpene synthesis & new resin canals in wood

Resin canal epithelial cells

2-4 weeks

Immediately

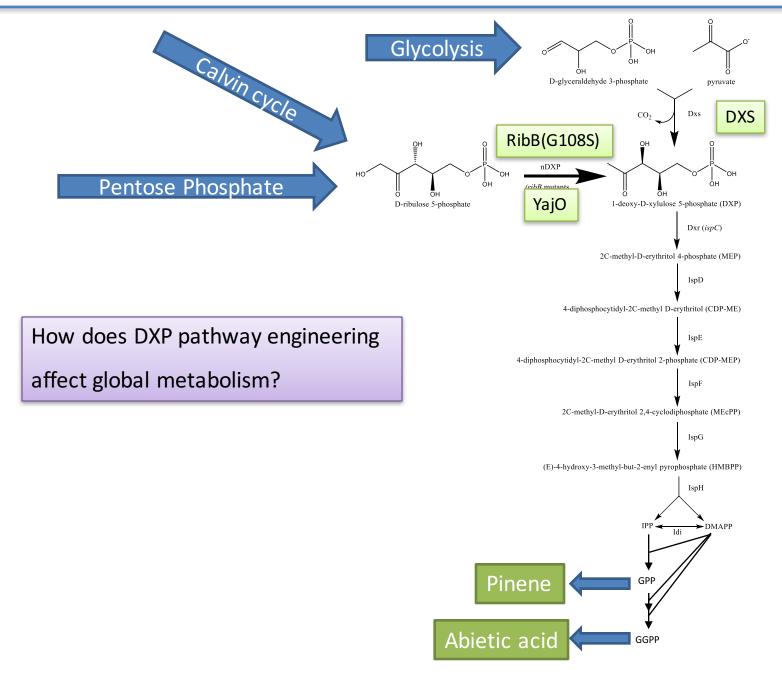
Jasmonate and ethylene signaling

0-7 days

Dual Strategy to Increase Wood Terpenes in Pine

Breeding

- Slash pine high gum selections increase oleoresin tapping yields 1.5-2.0 fold
- Extensive genetic analysis of constitutive traits
- Accelerated breeding with genomic selection models in loblolly pine


Genetic Engineering

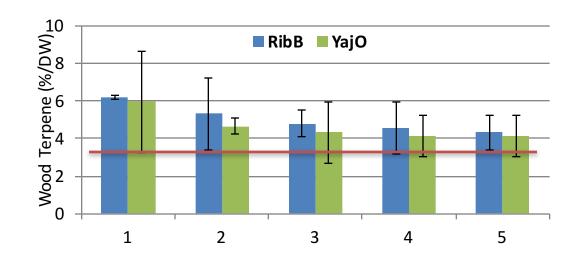
- Three synergistic strategies
 - Increase resin canal #/volume
 - Increase carbon flux through DXP/MEP pathway
 - Increase enzyme efficiency

Three Levels of Engineering

Development	Pathway	Enzyme
Goals • Increase # of cells synthesizing terpenes • Increase storage Approaches • Discover regulators of resinosis • Inducers of new resin canal formation • Inducers of terpene synthesis	 Goals Increase flux Increase efficiency of carbon conversion Approaches Enzyme shunts that reduce carbon loss Overexpression of rate limiting enzymes 	Goals • Alter terpene composition • Increase efficiency Approaches • Produce bisabolene in wood • Improve prenyl transferase and terpene synthases

Global Analysis of Round 1 DXP-engineered plants

Greenhouse of 1.5Y Loblolly Pine Genetically Transformed Seedlings

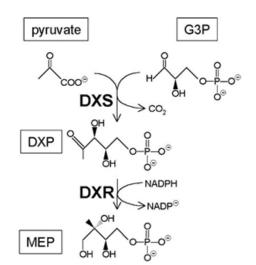


Overall Mean Terpene Content from <u>All</u> Lines

			C10 Mean	C15 Mean	C20 Mean	Total Mean	Total
Gene	# lines	Ν	(%/DW)	(%/DW)	(%/DW)	(%/DW)	STD
RibB	28	81	0.99	0.00007	2.46	3.44	0.68
YajO	15	44	0.84	0.0008	2.36	3.20	0.96
DXS	4	12	0.77	0.0	2.38	3.10	0.77
Control	9	24	0.83	0.0	1.82	2.65	0.55

Five highest lines for each construct

Summary of Pathway Engineering


Pathway

Goals

- Increase flux
- Increase efficiency of carbon conversion

Approaches

- Enzyme shunts that reduce carbon loss
- Overexpression of rate limiting enzymes

- RibB & YajO (nDXP) utilize ribulose-5-phosphate which is more efficient than DXS
- RibB is not known to be regulated by feedback inhibition like DXS
- RibB increases young seedling total terpenes in wood by > 2 fold

Acknowledgements

COLLABORATORS

University of Florida

 George Casella, John Davis, Chris Dervinis, Hemant Patel, Alejandro Riveros-Walker, Yongsheng Wang, Jared Westbrook

ArborGen

- Les Pearson, Will Rottmann NREL

Mark Davis, Robert Sykes

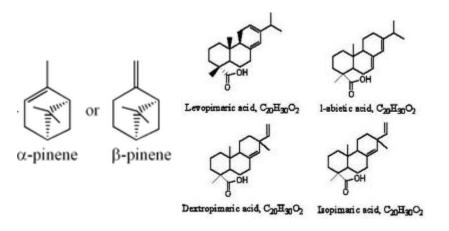
University of California, Berkeley

UF FLORIDA

 Jay Keasling, Jim Kirby, Gabriella Papa, Blake Simmons

ARBORGEN

FUNDING DOE/ARPA-E NSF Forest Biology Research Cooperative - ArborGen, Plum Creek Timber, Rayonier, Weyerhaeuser, RMS, F & W



Innovation in Transportation

Pine Terpenes

 Naturally synthesize a diversity of terpenes as defense compounds

- Terpenes accumulate in wood naturally to >20%
 - Constitutive synthesis
 - Inducible synthesis

- Broad genetic diversity
- USFS selected slash pine trees that produce 2-3x greater amounts of resin upon tapping
- Terpene resin flow and α to β pinene ratios are under moderate to strong genetic control

