Quantifying Biomass Feedstock Variability Using the DOE Bioenergy Feedstock Library

Rachel Emerson, Victor Walker, Amber Hoover, Marnie Cortez, Robert Kinoshita, Garold Gresham

Advanced Bioeconomy Feedstocks Conference

Miami, FL

June 7-8 2016
• DOE has recognized the importance of supporting expansion of the US bioenergy industry.

• Biomass resource assessments identified over 1 billion tons of potentially available biomass in contiguous US by 2030.

• The physical and chemical variability and the sources of that variability will have a huge impact on logistics.

Raw biomass is NOT a biorefinery feedstock!
Variability Impacts Cost

- Variability in feedstock quality can be extreme.
- Understanding variability is necessary to establish a valuation system for bioenergy feedstocks.
- Feedstock variability impacts financial risk

Variability exists due to a number of confounding factors.

- Each 1% increase in ash increases cost ~$2.25/ton
 - Replacement
 - Disposal
 - Wear and tear
 - Buffering capacity

~2300 samples Ranging from 2 to >40%
Bioenergy Feedstock Library

- Collaboration with DOE Regional Feedstock Partnership
 - Store, Track, and Analyze samples

Tracking all information associated at every step in sample life cycle
Library Overview

- 35,000 unique sample
 - 90 feedstock types
 - 38 states in US
 - 3 countries

- >100 collaborating universities, feedstock supplier, National labs, and industrial partners

- 3321 samples with analytical data publically available.
 - Chemical
 - Physical
 - Conversion

[Link to Bioenergy Library Website]

![Bioenergy Feedstock Library Table]

<table>
<thead>
<tr>
<th>Attribute</th>
<th>#Entries</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignin (%)</td>
<td>242</td>
<td>15.72</td>
<td>21.79</td>
<td>19.46</td>
<td>1.08</td>
</tr>
</tbody>
</table>

[Frequency Graph]
Application of Library Variability

- Regional Feedstock Partnership quality parameter data.
- Sources of Variability
 - Crop years
 - Feedstocks
 - Harvesting conditions
 - Field Treatments
- How does this help us answer large scale questions about feedstock variability?

<table>
<thead>
<tr>
<th></th>
<th>#’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Years</td>
<td>5</td>
</tr>
<tr>
<td>Feedstocks</td>
<td>5</td>
</tr>
<tr>
<td>States</td>
<td>21</td>
</tr>
<tr>
<td>Samples</td>
<td>1937</td>
</tr>
</tbody>
</table>
Drought Study

- 3 Feedstocks
 - Corn Stover
 - Native Mixed Grass
 - Miscanthus x giganteus

- 3 Locations
 - Iowa
 - Missouri
 - Nebraska

Drought effects on Physical Yields and Quality Measurements.

Drought Study Cont.

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Location</th>
<th>Year</th>
<th>n</th>
<th>TEY (L Mg(^{-1}))</th>
<th>Dry Biomass (Mg ha(^{-1}))</th>
<th>TEY (L ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Stover</td>
<td>Iowa</td>
<td>2010</td>
<td>11</td>
<td>334 (7)</td>
<td>3.0 (1.4)</td>
<td>990 (471)</td>
</tr>
<tr>
<td>Corn Stover</td>
<td>Iowa</td>
<td>2012</td>
<td>11</td>
<td>300 (8)</td>
<td>3.7 (1.1)</td>
<td>1125 (325)</td>
</tr>
<tr>
<td>Mixed Grasses</td>
<td>Missouri</td>
<td>2010</td>
<td>18</td>
<td>250 (12)</td>
<td>2.5 (0.6)</td>
<td>635 (146)</td>
</tr>
<tr>
<td>Mixed Grasses</td>
<td>Missouri</td>
<td>2012</td>
<td>14</td>
<td>216 (17)</td>
<td>1.2 (0.6)</td>
<td>259 (119)</td>
</tr>
<tr>
<td>Miscanthus</td>
<td>Nebraska</td>
<td>2010</td>
<td>12</td>
<td>342 (5)</td>
<td>27.7 (3.2)</td>
<td>9495 (1159)</td>
</tr>
<tr>
<td>Miscanthus</td>
<td>Nebraska</td>
<td>2012</td>
<td>12</td>
<td>292 (5)</td>
<td>23.7 (1.8)</td>
<td>6912 (545)</td>
</tr>
</tbody>
</table>

Conclusions:
- Corn Stover yields not affected by drought but quality was impacted.
- Mixed grasses and Miscanthus decreased significantly both yield and quality.
- Miscanthus affects of drought were much more significant than field nitrogen treatments.
• Quality variability is an important factor in the success of the bioeconomy.

• Library is a useful sample tracking and management tool for project level management.

• The ubiquitous data collected across multiple projects can be used in aggregation to help understand scope and sources of feedstock variability.

• Publically available tool meant to help not only INL research but bioenergy researchers everywhere.
Acknowledgements

• Other Library team members: Brad Thomas, Ross Hays, Chenlin Li, Rachel Colby.

• Those who were authors or contributed to data:

 INL: Allison Ray, Jeffrey Lacey, Garold Gresham, Dave Muth Jr., Nathanael Kilburg, James Mahoney, Cole Glass, Sabrina Morgan, Matthew Bryant, Karen Delezene-Briggs, Sergio Hernandez

 NREL: Courtney Payne, Amie Sluiter, Edward Wolfrum, Stefanie Maletich

 ARS-USDA: Doug Karlen, Larry Pellack, Gary Radke

 Iowa State University: Stuart Birrell, David Laird

 University of Missouri: Robert Kallenbach

 University of Georgia: Josh Egenolf, Carl Jordan

 University of Nebraska-Lincoln: Matthew Sousek, Roch Gaussoin

 University of Illinois: Thomas Voight, Emily Thomas, Andy Wycislo, DoKyoung Lee

 • Collaborators mentioned: Krystel Castillo (University of Texas at San Antonio), Emily Heaton (Iowa State University), and Danielle Wilson (Iowa State University), Oakridge National Laboratory.

This work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office Contract DE-AC07-05ID14517
Questions?
NIR Model Development

• Proximate/Ultimate rapid characterization

• Development of NIR models that can handle variability:
 – Feedstock (including different cultivars)
 – Location
 • Matrix effects of different locations within one type of feedstock can affect analyte concentrations
 – Crop Year/ Harvest Season
 • As seen in the drought study harvest year can effect multiple physical and chemical components in feedstocks

• High throughput and rapid screening techniques are necessary to quickly characterize samples

<table>
<thead>
<tr>
<th>Feedstock</th>
<th># of States</th>
<th># of Years</th>
<th>Total # Samples</th>
<th>Range: %Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Grasses</td>
<td>2</td>
<td>5</td>
<td>43</td>
<td>4-11</td>
</tr>
<tr>
<td>MIS (Miscanthus)</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>1-7</td>
</tr>
<tr>
<td>SG (Switchgrass)</td>
<td>5</td>
<td>5</td>
<td>38</td>
<td>1-12</td>
</tr>
<tr>
<td>SOR (Sorghum)</td>
<td>7</td>
<td>5</td>
<td>40</td>
<td>3-12</td>
</tr>
<tr>
<td>EC (Energy Cane)</td>
<td>5</td>
<td>4</td>
<td>48</td>
<td>1-8</td>
</tr>
<tr>
<td>WIL (Willow)</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>1-4</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>6</td>
<td>233</td>
<td>1-12</td>
</tr>
</tbody>
</table>
NIR Model Results

Model Merits

<table>
<thead>
<tr>
<th>Metric</th>
<th>Common</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSEC</td>
<td>0.92</td>
<td>0.65</td>
</tr>
<tr>
<td>RMSECV</td>
<td>1.01</td>
<td>0.88</td>
</tr>
<tr>
<td>R^2 Cal</td>
<td>0.89</td>
<td>0.95</td>
</tr>
<tr>
<td>R^2 CV</td>
<td>0.84</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Conclusions:
Using advanced spectral preprocessing techniques a PLS model was built to predict ash content that could handle feedstock, temporal, and spatial variabilities.
Collaboration Opportunities

• The goals of the Library team are to establish collaborations so that disparate data can be brought together in a single management framework to perform similar studies too large for a single institution.

• Examples:
 – University of Texas at San Antonio: Krystel Castillo
 • Using the publically available library data to answer nationwide questions about chemical and physical differences based on the feedstock type and storage conditions.
 – Iowa State University: Emily Heaton & Danielle Wilson
 • Biomass Crop Production Lab will be using our library to manage their own field experiments and track data
 • Collaboratively we will be analyzing the samples from these studies for chemical and physical properties.
 – INL: Logistical Supply Chain Model Inputs
 • As the data in the library grows it has become a resources for supplying real data for simulations for logistical supply chain modeling efforts.
 • Energy inputs for processing samples can be linked to quality properties of the samples for a larger picture.